A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5
Links
- Milan Janjic, Two Enumerative Functions
- Eric Weisstein's World of Mathematics, Cross Polytope
Crossrefs
Programs
-
Magma
[Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
-
Maple
a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3) seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007 seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Mathematica
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
Formula
a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012
Comments