cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
    seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012