A130812 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).
64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..1000
- Milan Janjic, Two Enumerative Functions
- Eric Weisstein's World of Mathematics, Cross Polytope
Crossrefs
Programs
-
Magma
[Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
-
Maple
a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3); seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007 seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Mathematica
CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)
Formula
a(n) = binomial(2*n,6) + binomial(n,2)*binomial(2*n-4,2) - n*binomial(2*n-2,4) - binomial(n,3).
a(n) = C(n,n-6)*2^6, n>=6. - Zerinvary Lajos, Dec 07 2007
G.f.: 64*x^6/(1-x)^7. - Colin Barker, Mar 20 2012
Comments