A130813
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811,
A130812. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A185342
Triangle of successive recurrences in columns of A117317(n).
Original entry on oeis.org
2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0
Triangle T(n,k),for 1<=k<=n, begins :
2 (1)
4 -4 (2)
6 -12 8 (3)
8 -24 32 -16 (4)
10 -40 80 -80 32 (5)
12 -60 160 -240 192 -64 (6)
14 -84 280 -560 672 -448 128 (7)
16 -112 448 -1120 1792 -1792 1024 -256 (8)
Successive rows can be divided by A171977.
-
Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
-
for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017
A373547
Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0
The triangle begins as:
1;
1, 4;
1, 12, 16;
1, 24, 80, 64;
1, 40, 240, 448, 256;
1, 60, 560, 1792, 2304, 1024;
1, 84, 1120, 5376, 11520, 11264, 4096;
...
T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
-
T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *)
T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
Showing 1-3 of 3 results.
Comments