A130837 Continued fraction representation of Erdos constant d = 1-(1+log(log(2)))/log(2) = 0.08607133....whose decimal expansion is A074738.
0, 11, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 4, 1, 1, 10, 1, 1, 8, 2, 18, 2, 6, 1, 2, 1, 2, 2, 1, 1, 1, 4, 8, 2, 1, 3, 2, 19, 2, 1, 1, 2, 2, 7, 1, 7, 1, 17, 3, 3, 4, 1, 1, 87, 4, 1, 2, 11, 12, 16, 1, 1, 2
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Kevin Ford, Integers with a divisor in (y,2y], arXiv:math/0607473 [math.NT], 2006-20013. To appear in the proceedings of the workshop Anatomy of Integers (Montreal, 2006).
Crossrefs
Cf. A074738.
Programs
-
Magma
ContinuedFraction(1-(1+Log(Log(2)))/Log(2)); // G. C. Greubel, Apr 16 2018
-
Mathematica
ContinuedFraction[1 - (1 + Log[Log[2]])/Log[2], 100] (* G. C. Greubel, Apr 16 2018 *)
-
PARI
contfrac(1-(1+log(log(2)))/log(2)) \\ G. C. Greubel, Apr 16 2018