cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A130862 a(n) = (n-1)*(n+2)*(2*n+11)/2.

Original entry on oeis.org

0, 30, 85, 171, 294, 460, 675, 945, 1276, 1674, 2145, 2695, 3330, 4056, 4879, 5805, 6840, 7990, 9261, 10659, 12190, 13860, 15675, 17641, 19764, 22050, 24505, 27135, 29946, 32944, 36135, 39525, 43120, 46926, 50949, 55195, 59670, 64380, 69331, 74529, 79980, 85690, 91665, 97911, 104434, 111240, 118335, 125725, 133416, 141414
Offset: 1

Views

Author

Roger L. Bagula, Jul 22 2007

Keywords

Crossrefs

Cf. A055998.

Programs

  • Magma
    [(n-1)*(n+2)*(2*n+11)/2: n in [1..50]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Rest[CoefficientList[Series[x^2(30-35x+11x^2)/(-1+x)^4,{x,0,30}],x]] (* or *) LinearRecurrence[{4,-6,4,-1},{0,30,85,171},30] (* Harvey P. Dale, May 01 2011 *)
  • PARI
    a(n)=(2*n^3 + 13*n^2 + 7*n - 22)/2 \\ Charles R Greathouse IV, May 02 2011

Formula

a(n) = (5/2)*(n+2)*(n+3)*(Sum_{j=1..n} Sum_{m=1..j} Sum_{k=1..m} (k^2-1))/(Sum_{j=1..n} Sum_{m=1..j} Sum_{k=1..m} k) = (5/2)*(n+2)*(n+3)*A130857(n)/A000332(n+3).
G.f.: x^2*(30-35*x+11*x^2)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=30, a(2)=85, a(3)=171. - Harvey P. Dale, May 01 2011

Extensions

Edited by N. J. A. Sloane, May 01 2011
Showing 1-1 of 1 results.