A130876 Centered 1729-gonal numbers.
1, 1730, 5188, 10375, 17291, 25936, 36310, 48413, 62245, 77806, 95096, 114115, 134863, 157340, 181546, 207481, 235145, 264538, 295660, 328511, 363091, 399400, 437438, 477205, 518701, 561926, 606880, 653563, 701975, 752116, 803986, 857585, 912913
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A130859.
Programs
-
Maple
a:= n-> 1+(1729/2)*n*(1+n): seq(a(n), n=0..35); # Alois P. Heinz, Jul 16 2013
-
Mathematica
LinearRecurrence[{3,-3,1},{1,1730,5188},40] (* or *) Table[1+(1729/2)n(n+1), {n,0,40}] (* Harvey P. Dale, May 22 2017 *)
-
PARI
a(n) = 1 + (1729/2)*n + (1729/2)*n^2 \\ Michel Marcus, Jul 16 2013
Formula
a(n) = 1 + (1729/2)*n + (1729/2)*n^2.
From Elmo R. Oliveira, Nov 27 2024: (Start)
G.f.: (1 + 1727*x + x^2)/(1-x)^3.
E.g.f.: exp(x)*(1 + 1729*x*(2 + x)/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)