A130897 Numbers that are not exponentially squarefree.
16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976
Offset: 1
Keywords
Examples
16=2^4, 48=2^4*3, 256=2^8 are non-e-squarefree, since 4 and 8 are nonsquarefree.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. V. Subbarao, On some arithmetic convolutions, in The Theory of Arithmetic Functions, Lecture Notes in Mathematics No. 251, 247-271, Springer, 1972, doi:10.1007/BFb0058796.
- Laszlo Toth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
Crossrefs
Programs
-
Haskell
a130897 n = a130897_list !! (n-1) a130897_list = filter (any (== 0) . map (a008966 . fromIntegral) . a124010_row) [1..] -- Reinhard Zumkeller, Mar 13 2012
-
Maple
filter:=n -> not andmap(t -> numtheory:-issqrfree(t[2]), ifactors(n)[2]); select(filter, [$1..1000]); # Robert Israel, Sep 03 2015
-
Mathematica
Select[Range@ 1000, ! AllTrue[Last /@ FactorInteger@ #, SquareFreeQ] &] (* Michael De Vlieger, Sep 07 2015, Version 10 *)
-
PARI
is(n)=my(f=factor(n)[, 2]); for(i=1, #f, if(!issquarefree(f[i]), return(1))); 0 \\ Charles R Greathouse IV, Sep 03 2015
Comments