cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.

Original entry on oeis.org

1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
Offset: 2

Views

Author

Gary W. Adamson, Jun 08 2007

Keywords

Examples

			a(4) = 2 = 9 mod 7 where A007663(4) = 9.
The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
		

References

  • Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.

Crossrefs

Cf. A007663.

Programs

  • Maple
    a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d,",fq mod p) ; od: # R. J. Mathar, Oct 28 2008
  • Mathematica
    Mod[(2^(#-1)-1)/#,#]&/@Prime[Range[2,70]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ Felix Fröhlich, Jul 26 2014

Formula

Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.

Extensions

More terms from R. J. Mathar, Oct 28 2008