A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p.
1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
Offset: 2
Keywords
Examples
a(4) = 2 = 9 mod 7 where A007663(4) = 9. The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.
References
- Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A007663.
Programs
-
Maple
a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d,",fq mod p) ; od: # R. J. Mathar, Oct 28 2008
-
Mathematica
Mod[(2^(#-1)-1)/#,#]&/@Prime[Range[2,70]] (* Harvey P. Dale, Mar 31 2013 *)
-
PARI
forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ Felix Fröhlich, Jul 26 2014
Formula
Fermat quotients mod p = A007663: (1, 3, 9, 93, 315, ...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.
Extensions
More terms from R. J. Mathar, Oct 28 2008