A131042 Natural numbers A000027 with 6n+3 and 6n+4 terms swapped.
1, 2, 4, 3, 5, 6, 7, 8, 10, 9, 11, 12, 13, 14, 16, 15, 17, 18, 19, 20, 22, 21, 23, 24, 25, 26, 28, 27, 29, 30, 31, 32, 34, 33, 35, 36, 37, 38, 40, 39, 41, 42, 43, 44, 46, 45, 47, 48, 49, 50, 52, 51, 53, 54, 55, 56, 58, 57, 59, 60, 61, 62, 64, 63, 65, 66, 67, 68, 70, 69, 71, 72
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for sequences that are permutations of the natural numbers
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,1,-1},{1,2,4,3,5,6,7},80] (* Harvey P. Dale, Aug 26 2024 *)
-
PARI
Vec(x*(1 + x + 2*x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^100)) \\ Colin Barker, Apr 08 2017
Formula
a(n) = (24*floor(n/6)+3*n^2-3*n+8+9*floor(n/3)*(3*floor(n/3)-2*n+1)-(3*n^2-7*n+8+3*floor(n/3)*(9*floor(n/3)-6*n+7))*(-1)^floor(n/3))/4. - Luce ETIENNE, Apr 08 2017
From Colin Barker, Apr 08 2017: (Start)
G.f.: x*(1 + x + 2*x^2 - x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
(End)