cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131061 Triangle read by rows: T(n,k) = 4*binomial(n,k) - 3 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 21, 13, 1, 1, 17, 37, 37, 17, 1, 1, 21, 57, 77, 57, 21, 1, 1, 25, 81, 137, 137, 81, 25, 1, 1, 29, 109, 221, 277, 221, 109, 29, 1, 1, 33, 141, 333, 501, 501, 333, 141, 33, 1, 1, 37, 177, 477, 837, 1005, 837, 477, 177, 37, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131062: (1, 2, 7, 20, 49, 110, 235, ...); the binomial transform of (1, 1, 4, 4, 4, ...).
Triangle equals 4*A007318 - 3*A000012 as infinite lower triangular matrices. - Emeric Deutsch, Jun 21 2007

Examples

			First few rows of the triangle are
  1;
  1,  1;
  1,  5,  1;
  1,  9,  9,  1;
  1, 13, 21, 13,  1;
  1, 17, 37, 37, 17,  1;
  1, 21, 57, 77, 57, 21, 1;
  ...
		

Crossrefs

Programs

  • Magma
    [4*Binomial(n, k) -3: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 4*binomial(n, k)-3 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 21 2007
  • Mathematica
    Table[4*Binomial[n, k] -3, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[4*binomial(n, k) -3 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.:(1 - z - t*z + 4*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 21 2007

Extensions

More terms from Emeric Deutsch, Jun 21 2007