A131065 Triangle read by rows: T(n,k) = 6*binomial(n,k) - 5 for 0 <= k <= n.
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 31, 19, 1, 1, 25, 55, 55, 25, 1, 1, 31, 85, 115, 85, 31, 1, 1, 37, 121, 205, 205, 121, 37, 1, 1, 43, 163, 331, 415, 331, 163, 43, 1, 1, 49, 211, 499, 751, 751, 499, 211, 49, 1, 1, 55, 265, 715, 1255, 1507, 1255, 715, 265, 55, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 7, 1; 1, 13, 13, 1; 1, 19, 31, 19, 1; 1, 25, 55, 55, 25, 1; ...
Links
- Indranil Ghosh, Rows 0..120 of triangle, flattened
Programs
-
Magma
[6*Binomial(n,k) -5: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
Maple
T := proc (n, k) if k <= n then 6*binomial(n, k)-5 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
-
Mathematica
Table[6*Binomial[n,k]-5,{n,0,15},{k,0,n}]//Flatten (* Harvey P. Dale, May 15 2016 *)
-
Sage
[[6*binomial(n,k) -5 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
Formula
G.f.: (1-z-t*z+6*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007
Extensions
More terms from Emeric Deutsch, Jun 20 2007
Comments