cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131066 Binomial transform of [1, 1, 6, 6, 6, ...].

Original entry on oeis.org

1, 2, 9, 28, 71, 162, 349, 728, 1491, 3022, 6089, 12228, 24511, 49082, 98229, 196528, 393131, 786342, 1572769, 3145628, 6291351, 12582802, 25165709, 50331528, 100663171, 201326462, 402653049, 805306228, 1610612591, 3221225322
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131065. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 28 = sum of row 4 of triangle A131065: (1 + 13 + 13 + 1).
a(3) = 28 = (1, 3, 3, 1) dot (1, 1, 6, 6) = (1 + 3 + 18 + 6).
		

Crossrefs

Programs

  • GAP
    Print(List([0..30],n->6*2^n-5*n-5)); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    [6*2^n -5*(n+1): n in [0..30]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    a := proc (n) options operator, arrow; 6*2^n-5*n-5 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[6*2^n -5*(n+1), {n,0,30}] (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [6*2^n -5*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 6*2^n - 5*(n + 1).
G.f.: (1 - 2*x + 6*x^2)/((1-2*x)*(1-x)^2). (End)
E.g.f.: 6*exp(2*x) - 5*(1 + x)*exp(x). - G. C. Greubel, Mar 12 2020
a(n) = 2*a(n - 1) + 5*n - 5. - Kritsada Moomuang, Jul 03 2020
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jul 10 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007