cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131068 Binomial transform of [1, 1, 7, 7, 7, ...].

Original entry on oeis.org

1, 2, 10, 32, 82, 188, 406, 848, 1738, 3524, 7102, 14264, 28594, 57260, 114598, 229280, 458650, 917396, 1834894, 3669896, 7339906, 14679932, 29359990, 58720112, 117440362, 234880868, 469761886, 939523928, 1879048018, 3758096204
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131067. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 32 = sum of row 4 terms of triangle A131067: (1 + 15 + 15 + 1).
a(3) = 32 = (1, 3, 3, 1) dot (1, 1, 7, 7) = (1 + 3 + 21 + 7).
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 10]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2) + 2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 05 2012
    
  • Maple
    a := proc (n) options operator, arrow; 7*2^n-6*n-6 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[7*2^n -6*(n+1), {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2008; modified by G. C. Greubel, Mar 12 2020 *)
    CoefficientList[Series[(1-2x+7x^2)/((1-2x)(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 05 2012 *)
  • PARI
    vector(31, n, my(m=n-1); 7*2^m -6*(m+1) ) \\ G. C. Greubel, Mar 12 2020
    
  • Sage
    [7*2^n -6*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 7*2^n - 6*(n + 1).
G.f.: (1 - 2*x + 7*x^2)/((1-2*x)*(1-x)^2). (End)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Vincenzo Librandi, Jul 05 2012
E.g.f.: 7*exp(2*x) - 6*(1+x)*exp(x). - G. C. Greubel, Mar 12 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007