cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131076 Row sums of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.

Original entry on oeis.org

1, 3, 7, 15, 26, 42, 64, 93, 139, 231, 463, 1092, 2744, 6840, 16384, 37383, 81295, 169119, 338239, 654192, 1232288, 2280864, 4194304, 7761375, 14635711, 28384383, 56768767, 116566080, 243472256, 511907712, 1073741824, 2232713343, 4585959679, 9292452351
Offset: 1

Views

Author

Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007

Keywords

Comments

Sum of n-th row equals (n+1)-th term of main diagonal minus (n+1)-th term of first column: a(n) = A129961(n+1) - A131078(n+1).

Examples

			For first seven rows of T see A131074 or A129961.
		

Crossrefs

Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.

Programs

  • Magma
    m:=32; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ &+[ M[j, k]: k in [1..j] ]: j in [1..m] ];
    
  • Mathematica
    LinearRecurrence[{7,-20,30,-27,21,-24,30,-26,14,-4},{1,3,7,15,26,42,64,93,139,231},40] (* Harvey P. Dale, Jun 23 2025 *)
  • PARI
    lista(m) = my(M=matrix(m, m)); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, print1(sum(k=1, j, M[j, k]), ", "))

Formula

G.f.: x*(1-4*x+6*x^2-4*x^3-2*x^4+10*x^5-10*x^6+5*x^7-x^8)/((1-x)*(1-2*x)*(1+x^4)*(1-4*x+6*x^2-4*x^3+2*x^4)).