A131109 a(n) is the smallest semiprime such that difference between a(n) and next semiprime, b(n), is n.
9, 4, 6, 10, 69, 15, 26, 169, 146, 237, 95, 1082, 818, 597, 1603, 2705, 2078, 4511, 1418, 2681, 14545, 13863, 37551, 6559, 16053, 55805, 26707, 17965, 308918, 32777, 41222, 35103, 393565, 219509, 153263, 87627, 2263057, 35981, 1789339, 741841, 797542
Offset: 1
Keywords
Examples
n, b(n)-a(n): 1=10-9, 2=6-4, 3=9-6, 4=14-10, 5=74-69, 6=21-15, 7=33-26, 8=177-169, 9=155-146, 10=247-237, 11=106-95, 12=1094-1082, 13=831-818, 14=611-597, 15=1618-1603, 16=2721-2705, 17=2095-2078, 18=4529-4511, 19=1437-1418, 20=2701-2681, 21=14566-14545, 22=13885-13863, 23=37574-37551, 24=6583-6559, 25=16078-16053, 26=55831-55805, 27=26734-26707, 28=17993-17965, 29=308947-308918, 30=32807-32777, 31=41253-41222, 32=35135-35103, 33=393598-393565, 34=219543-219509, 35=153298-153263, 36=87663-87627, 37=2263094-2263057, 38=36019-35981.
Links
- Martin Raab, Table of n, a(n) for n = 1..120, terms up to a(100) from T. D. Noe and Klaus Brockhaus
Programs
-
Mathematica
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; NextSemiPrime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; nn = 30; t = Table[0, {nn}]; found = 0; sp0 = 4; While[found < nn, sp1 = NextSemiPrime[sp0]; d = sp1 - sp0; If[d <= nn && t[[d]] == 0, t[[d]] = sp0; found++]; sp0 = sp1]; t (* T. D. Noe, Oct 02 2012 *)
Extensions
Corrected and extended by T. D. Noe and R. J. Mathar, Sep 28 2007
Comments