A123375
Least k such that the difference between consecutive semiprimes A065516(k) equals n, or 0 if no such k exists.
Original entry on oeis.org
3, 1, 2, 4, 24, 6, 10, 56, 50, 78, 34, 320, 249, 186, 463, 762, 598, 1238, 422, 760, 3760, 3585, 9214, 1765, 4112, 13447, 6675, 4585, 68498, 8112, 10083, 8650, 86203, 49433, 35085, 20641, 458421, 8861, 366314, 157857, 169147, 487115, 277440, 563951, 511757, 920602, 75150
Offset: 1
A065516(n) begins {2, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 1, 3, 1, 7, 3, 2, 4, 2, 1, 4, 3, 4, 5, ...}.
Thus a(1) = 3, a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 24.
-
nextSprime := proc(n) local res ; res := n+1 ; while numtheory[bigomega](res) <> 2 do res := res+1 ; od ; RETURN(res) ; end ; nmax := 500 ; kmax := 500000 ; a := array(1..nmax) ; for i from 1 to nmax do a[i] := 0 ; od : sp1 := 4 : sp2 := nextSprime(sp1) : n := sp2-sp1 : a[n] := 1 : for k from 2 to kmax do sp1 := sp2 ; sp2 := nextSprime(sp1) ; n := sp2-sp1 ; if a[n] = 0 then a[n] := k ; fi ; od : for i from 1 to nmax do if a[i] = 0 then break ; else printf("%d,",a[i]) ; fi ; od : # R. J. Mathar, Jan 13 2007
-
Table[k=6;While[FreeQ[b=Differences[Select[Range@k++,PrimeOmega[#]==2&]],n]];
Length@b,{n,11}] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
A215231
Increasing gaps between semiprimes.
Original entry on oeis.org
2, 3, 4, 6, 7, 11, 14, 19, 20, 24, 25, 28, 30, 32, 38, 47, 54, 55, 70, 74, 76, 82, 85, 87, 88, 95, 98, 107, 110, 112, 120, 123, 126, 146, 163, 166, 171, 174
Offset: 1
4 is here because the difference between 10 and 14 is 4, and there is no smaller semiprimes with this property.
Cf.
A005250 (increasing gaps between primes).
Cf.
A239673 (increasing gaps between sphenic numbers).
-
a215231 n = a215231_list !! (n-1)
(a215231_list, a085809_list) = unzip $ (2, 1) : f 1 2 a065516_list where
f i v (q:qs) | q > v = (q, i) : f (i + 1) q qs
| otherwise = f (i + 1) v qs
-- Reinhard Zumkeller, Mar 23 2014
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nextSemiprime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; t = {{0, 0}}; s1 = nextSemiprime[1]; While[s1 < 10^7, s2 = nextSemiprime[s1]; d = s2 - s1; If[d > t[[-1, 1]], AppendTo[t, {d, s1}]; Print[{d, s1}]]; s1 = s2]; t = Rest[t]; Transpose[t][[1]]
A264044
Numbers n such that n and n+4 are consecutive semiprimes.
Original entry on oeis.org
10, 51, 58, 65, 87, 111, 129, 209, 249, 274, 291, 305, 335, 377, 382, 403, 407, 447, 454, 485, 489, 493, 497, 529, 538, 629, 681, 699, 713, 749, 767, 781, 785, 803, 831, 889, 901, 917, 939, 951, 961, 985, 989, 1007, 1037, 1073, 1115, 1191, 1207
Offset: 1
10=A001358(4) and 14=A001358(5).
-
B:= select(numtheory:-bigomega=2, [$1..2000]):
B[select(t ->B[t+1]-B[t]=4, [$1..nops(B)-1])]; # Robert Israel, Dec 21 2017
-
Select[Partition[Select[Range[1250], PrimeOmega@ # == 2 &], 2, 1], Differences@ # == {4} &][[All, 1]] (* Michael De Vlieger, Dec 20 2017 *)
SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,1300}],{1,0,0,0,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2020 *)
-
is(n)=bigomega(n)==2 && bigomega(n+4)==2 && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 \\ Charles R Greathouse IV, Nov 02 2015
A215232
Least semiprime m such that the next semiprime is m + A215231(n).
Original entry on oeis.org
4, 6, 10, 15, 26, 95, 597, 1418, 2681, 6559, 16053, 17965, 32777, 35103, 35981, 340894, 1069541, 1589662, 3586843, 5835191, 139139887, 251306317, 285074689, 327023206, 751411951, 981270902, 2655397631, 5238280946, 6498130361, 8512915573, 16328958619
Offset: 1
Cf.
A002386 (increasing gaps between primes).
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nextSemiprime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; t = {{0, 0}}; s1 = nextSemiprime[1]; While[s1 < 10^7, s2 = nextSemiprime[s1]; d = s2 - s1; If[d > t[[-1, 1]], AppendTo[t, {d, s1}]; Print[{d, s1}]]; s1 = s2]; t = Rest[t]; Transpose[t][[2]]
-
r=0;s=2;for(n=3,1e7,if(bigomega(n)==2,if(n-s>r,r=n-s;print1(s", "));s=n)) \\ Charles R Greathouse IV, Sep 07 2012
A217851
Least semiprime m such that the previous semiprime is m - A215231(n).
Original entry on oeis.org
6, 9, 14, 21, 33, 106, 611, 1437, 2701, 6583, 16078, 17993, 32807, 35135, 36019, 340941, 1069595, 1589717, 3586913, 5835265, 139139963, 251306399, 285074774, 327023293, 751412039, 981270997, 2655397729, 5238281053, 6498130471, 8512915685, 16328958739
Offset: 1
A264045
Numbers n such that n and n+5 are consecutive semiprimes.
Original entry on oeis.org
69, 77, 106, 161, 178, 221, 254, 309, 314, 329, 341, 386, 398, 417, 422, 473, 554, 662, 674, 689, 758, 794, 934, 974, 998, 1094, 1121, 1149, 1169, 1214, 1294, 1502, 1517, 1522, 1541, 1569, 1673
Offset: 1
a(1)=69=A001358(24) and a(1)+k=74=A001358(25).
-
Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,2000}],6,1], ?(#=={1,0,0,0,0,1}&)]] (* _Harvey P. Dale, Dec 16 2015 *)
-
is(n)=if(n%4==1, isprime((n+5)/2) && bigomega(n)==2, n%4==2 && isprime(n/2) && bigomega(n+5)==2) && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 && bigomega(n+4)!=2 \\ Charles R Greathouse IV, Nov 02 2015
A264046
Numbers k such that k and k+6 are consecutive semiprimes.
Original entry on oeis.org
15, 123, 365, 371, 505, 545, 573, 591, 649, 707, 807, 843, 943, 1067, 1159, 1247, 1357, 1405, 1529, 1555, 1633, 1739, 1745, 1829, 1843, 1897, 1909, 1985, 2149, 2159, 2209, 2285, 2329, 2353, 2363, 2407, 2413, 2463, 2501, 2643, 2773, 2779
Offset: 1
15 = A001358(6) and 21 = A001358(7).
-
Select[Partition[Select[Range[3000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==6&][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
-
is(n)=if(bigomega(n)!=2 || bigomega(n+6)!=2, return(0)); for(i=1,5,if(bigomega(n+i)==2, return(0))); 1 \\ Charles R Greathouse IV, Nov 02 2015
A278351
Least number that is the start of a prime-semiprime gap of size n.
Original entry on oeis.org
2, 7, 26, 97, 341, 241, 6091, 3173, 2869, 2521, 16022, 26603, 114358, 41779, 74491, 39343, 463161, 104659, 248407, 517421, 923722, 506509, 1930823, 584213, 2560177, 4036967, 4570411, 4552363, 7879253, 4417813, 27841051, 5167587, 13683034, 9725107, 47735342, 25045771, 63305661
Offset: 1
a(1) = 2 since there is a gap of 1 between 2 and 3, both of which are primes.
a(2) = 7 since there is a gap of 2 between 7 and 9, the first is a prime and the second is a semiprime.
a(3) = 26 since there is a gap of 3 between 26, a semiprime, and 29, a prime.
a(6) = 241 because the first prime-semiprime gap of size 6 is between 241 and 247.
-
nxtp[n_] := Block[{m = n + 1}, While[ PrimeOmega[m] > 2, m++]; m]; gp[_] = 0; p = 2; While[p < 1000000000, q = nxtp[p]; If[ gp[q - p] == 0, gp[q -p] = p; Print[{q -p, p}]]; p = q]; Array[gp, 40]
-
use ntheory ":all";
my($final,$p,$nextn,@gp) = (40,2,1); # first 40 values in order
forfactored {
if (scalar(@) <= 2) { my $q = $;
if (!defined $gp[$q-$p]) {
$gp[$q-$p] = $p;
while ($nextn <= $final && defined $gp[$nextn]) {
print "$nextn $gp[$nextn]\n";
$nextn++;
}
lastfor if $nextn > $final;
}
$p = $q;
}
} 3,10**14; # Dana Jacobsen, Sep 10 2018
A282407
Semiprimes p such that next semiprime after p is p + 40.
Original entry on oeis.org
741841, 1633213, 1889467, 1946677, 2210557, 2440203, 2655427, 2660857, 2729091, 2749273, 2774911, 3077323, 3724909, 3977473, 4021507, 4030891, 4323301, 4372337, 4408581, 4421713, 4608574, 4640419, 4836223, 5640861, 5691531, 6148599, 6166101, 6429853, 6786523
Offset: 1
-
is(p) = if(bigomega(p)==2 && bigomega(p+40)==2, for(i=p+1, p+39, if(bigomega(i)==2, return(0))); 1); \\ Jinyuan Wang, May 23 2021
A282424
Semiprimes p such that next semiprime after p is p + 50.
Original entry on oeis.org
1226777, 4732631, 5093729, 9210671, 12515461, 12917989, 16121409, 16183253, 16698881, 17263069, 19418903, 23003807, 24534161, 26519563, 26726659, 27625067, 29605299, 29772471, 32655031, 34027277, 34366179, 35340719, 37570683, 38117319, 38687461, 39038399, 39479381
Offset: 1
-
lista(nn) = my(r); for(k=1, nn, if(bigomega(k)==2, if(k-r==50, print1(r, ", ")); r=k)); \\ Jinyuan Wang, May 23 2021
Showing 1-10 of 13 results.
Comments