cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264046 Numbers k such that k and k+6 are consecutive semiprimes.

Original entry on oeis.org

15, 123, 365, 371, 505, 545, 573, 591, 649, 707, 807, 843, 943, 1067, 1159, 1247, 1357, 1405, 1529, 1555, 1633, 1739, 1745, 1829, 1843, 1897, 1909, 1985, 2149, 2159, 2209, 2285, 2329, 2353, 2363, 2407, 2413, 2463, 2501, 2643, 2773, 2779
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1) = 15 = A131109(k=6).

Examples

			15 = A001358(6) and 21 = A001358(7).
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Select[Range[3000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==6&][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    is(n)=if(bigomega(n)!=2 || bigomega(n+6)!=2, return(0)); for(i=1,5,if(bigomega(n+i)==2, return(0))); 1 \\ Charles R Greathouse IV, Nov 02 2015

A133597 Array of semiprimes, read by antidiagonals, where row k is the first of pairs of consecutive semiprimes j and j+k.

Original entry on oeis.org

9, 4, 14, 6, 49, 21, 10, 22, 55, 25, 69, 51, 35, 91, 33, 15, 77, 58, 46, 119, 34, 26, 123, 106, 65, 62, 143, 38, 169, 39, 365, 161, 87, 74, 159, 57, 146, 437, 134, 371, 178, 111, 82, 183, 85, 237, 226, 458, 187, 505, 221, 129, 115, 185, 86
Offset: 1

Views

Author

Jonathan Vos Post, Dec 27 2007

Keywords

Comments

Every semiprime occurs in this table exactly once. Note that similar tables exist for k-almost primes (integers with exactly k prime factors, with multiplicity), this being the k=2 slice of a 3-dimensional array.

Examples

			The array begins:
==================================================================
n=......1....2.....3....4....5....6....7....8....9...10
==================================================================
k=1.|...9...14....21...25...33...34...38...57...85...86....A070552
k=2.|...4...49....55...91..119..143..159..183..185..203....A136196
k=3.|...6...22....35...46...62...74...82..115..155..166....A264043
k=4.|. 10...51....58...65...87..111..129..209..249..274....A264044
k=5.|..69...77...106..161..178..221..254..309..314..329....A264045
k=6.|..15..123...365..371..505..545..573..591..649..707....A264046
k=7.|..26...39...134..187..194..267..519..566..655..771....
k=8.|.169..437...458..614..723..737..905..965.1047.1059....
k=9.|.146..226...278..346.1018.1177.1273.1546.1594.1865....
k=10|.237..427..1027.1101.1661.2723.2747.3173.3295.3669....A217030
==================================================================
		

Crossrefs

Programs

  • Mathematica
    v = Select[Range[5000], PrimeOmega[#]==2 &]; L[k_] := L[k] = v[[Select[Range[Length[v]-1], v[[#+1]] - v[[#]] == k &]]]; Flatten@ Table[ Table[L[k-j+1][[j]], {j, k}], {k, 10}] (* Giovanni Resta, Jun 20 2016 *)

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016
Showing 1-2 of 2 results.