A131109
a(n) is the smallest semiprime such that difference between a(n) and next semiprime, b(n), is n.
Original entry on oeis.org
9, 4, 6, 10, 69, 15, 26, 169, 146, 237, 95, 1082, 818, 597, 1603, 2705, 2078, 4511, 1418, 2681, 14545, 13863, 37551, 6559, 16053, 55805, 26707, 17965, 308918, 32777, 41222, 35103, 393565, 219509, 153263, 87627, 2263057, 35981, 1789339, 741841, 797542
Offset: 1
n, b(n)-a(n): 1=10-9, 2=6-4, 3=9-6, 4=14-10, 5=74-69, 6=21-15, 7=33-26, 8=177-169, 9=155-146, 10=247-237, 11=106-95, 12=1094-1082, 13=831-818, 14=611-597, 15=1618-1603, 16=2721-2705, 17=2095-2078, 18=4529-4511, 19=1437-1418, 20=2701-2681, 21=14566-14545, 22=13885-13863, 23=37574-37551, 24=6583-6559, 25=16078-16053, 26=55831-55805, 27=26734-26707, 28=17993-17965, 29=308947-308918, 30=32807-32777, 31=41253-41222, 32=35135-35103, 33=393598-393565, 34=219543-219509, 35=153298-153263, 36=87663-87627, 37=2263094-2263057, 38=36019-35981.
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; NextSemiPrime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; nn = 30; t = Table[0, {nn}]; found = 0; sp0 = 4; While[found < nn, sp1 = NextSemiPrime[sp0]; d = sp1 - sp0; If[d <= nn && t[[d]] == 0, t[[d]] = sp0; found++]; sp0 = sp1]; t (* T. D. Noe, Oct 02 2012 *)
A264044
Numbers n such that n and n+4 are consecutive semiprimes.
Original entry on oeis.org
10, 51, 58, 65, 87, 111, 129, 209, 249, 274, 291, 305, 335, 377, 382, 403, 407, 447, 454, 485, 489, 493, 497, 529, 538, 629, 681, 699, 713, 749, 767, 781, 785, 803, 831, 889, 901, 917, 939, 951, 961, 985, 989, 1007, 1037, 1073, 1115, 1191, 1207
Offset: 1
10=A001358(4) and 14=A001358(5).
-
B:= select(numtheory:-bigomega=2, [$1..2000]):
B[select(t ->B[t+1]-B[t]=4, [$1..nops(B)-1])]; # Robert Israel, Dec 21 2017
-
Select[Partition[Select[Range[1250], PrimeOmega@ # == 2 &], 2, 1], Differences@ # == {4} &][[All, 1]] (* Michael De Vlieger, Dec 20 2017 *)
SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,1300}],{1,0,0,0,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2020 *)
-
is(n)=bigomega(n)==2 && bigomega(n+4)==2 && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 \\ Charles R Greathouse IV, Nov 02 2015
A264045
Numbers n such that n and n+5 are consecutive semiprimes.
Original entry on oeis.org
69, 77, 106, 161, 178, 221, 254, 309, 314, 329, 341, 386, 398, 417, 422, 473, 554, 662, 674, 689, 758, 794, 934, 974, 998, 1094, 1121, 1149, 1169, 1214, 1294, 1502, 1517, 1522, 1541, 1569, 1673
Offset: 1
a(1)=69=A001358(24) and a(1)+k=74=A001358(25).
-
Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,2000}],6,1], ?(#=={1,0,0,0,0,1}&)]] (* _Harvey P. Dale, Dec 16 2015 *)
-
is(n)=if(n%4==1, isprime((n+5)/2) && bigomega(n)==2, n%4==2 && isprime(n/2) && bigomega(n+5)==2) && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 && bigomega(n+4)!=2 \\ Charles R Greathouse IV, Nov 02 2015
A264046
Numbers k such that k and k+6 are consecutive semiprimes.
Original entry on oeis.org
15, 123, 365, 371, 505, 545, 573, 591, 649, 707, 807, 843, 943, 1067, 1159, 1247, 1357, 1405, 1529, 1555, 1633, 1739, 1745, 1829, 1843, 1897, 1909, 1985, 2149, 2159, 2209, 2285, 2329, 2353, 2363, 2407, 2413, 2463, 2501, 2643, 2773, 2779
Offset: 1
15 = A001358(6) and 21 = A001358(7).
-
Select[Partition[Select[Range[3000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==6&][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
-
is(n)=if(bigomega(n)!=2 || bigomega(n+6)!=2, return(0)); for(i=1,5,if(bigomega(n+i)==2, return(0))); 1 \\ Charles R Greathouse IV, Nov 02 2015
A131939
Least k such that the difference between consecutive 3-almost primes A014612(k) equals n, or 0 if no such k exists.
Original entry on oeis.org
5, 3, 13, 1, 10, 2, 4, 31, 32, 36, 12, 7, 136, 19, 302, 486, 1094, 73, 1366, 6763, 1092, 2006, 8924, 4785, 18345, 18487, 42798, 16571, 11095, 57831, 60912, 4528, 24846, 41304, 232350, 233678, 123279, 1779265, 740729, 177385, 1015228, 1772286
Offset: 1
a(1) = 5 because A014612(6)-A014612(5) = 28-27 = 1.
a(2) = 3 because A014612(4)-A014612(3) = 20-18 = 2.
a(3) = 13 because 66-63 = 3.
a(4) = 1 because 12-8 = 4.
a(5) = 10 because 50-45 = 5.
a(6) = 2 because 18-12 = 6.
a(7) = 4 because 27-20 = 7.
a(8) = 31 because 138-130 = 8.
a(9) = 32 because 147-138 = 9
a(10) = 36 because 164-154 = 10.
-
p3=Select[Range[2*10^6],PrimeOmega[#]==3&];s={};Do[d=0;Until[p3[[d+1]]-p3[[d]]==n,d++];AppendTo[s,d],{n,37}];s (* James C. McMahon, Mar 02 2025 *)
Showing 1-5 of 5 results.
Comments