cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A215232 Least semiprime m such that the next semiprime is m + A215231(n).

Original entry on oeis.org

4, 6, 10, 15, 26, 95, 597, 1418, 2681, 6559, 16053, 17965, 32777, 35103, 35981, 340894, 1069541, 1589662, 3586843, 5835191, 139139887, 251306317, 285074689, 327023206, 751411951, 981270902, 2655397631, 5238280946, 6498130361, 8512915573, 16328958619
Offset: 1

Views

Author

T. D. Noe, Aug 07 2012

Keywords

Comments

The semiprime m + A215231(n) is in A217851.
Matomäki & Teräväinen prove that there is almost always (in the sense of natural density) a semiprime in (x, x + log(x)^2.1]. Under RH the exponent can be chosen as 2 + e for any e > 0. - Charles R Greathouse IV, Oct 03 2022

Crossrefs

Cf. A001358 (semiprimes), A131109, A215231, A217851.
Cf. A002386 (increasing gaps between primes).

Programs

  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nextSemiprime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; t = {{0, 0}}; s1 = nextSemiprime[1]; While[s1 < 10^7, s2 = nextSemiprime[s1]; d = s2 - s1; If[d > t[[-1, 1]], AppendTo[t, {d, s1}]; Print[{d, s1}]]; s1 = s2]; t = Rest[t]; Transpose[t][[2]]
  • PARI
    r=0;s=2;for(n=3,1e7,if(bigomega(n)==2,if(n-s>r,r=n-s;print1(s", "));s=n)) \\ Charles R Greathouse IV, Sep 07 2012

Extensions

a(27)-a(31) from Donovan Johnson, Aug 07 2012

A217851 Least semiprime m such that the previous semiprime is m - A215231(n).

Original entry on oeis.org

6, 9, 14, 21, 33, 106, 611, 1437, 2701, 6583, 16078, 17993, 32807, 35135, 36019, 340941, 1069595, 1589717, 3586913, 5835265, 139139963, 251306399, 285074774, 327023293, 751412039, 981270997, 2655397729, 5238281053, 6498130471, 8512915685, 16328958739
Offset: 1

Views

Author

T. D. Noe, Nov 07 2012

Keywords

Comments

These are the semiprimes that are the upper end of the gaps of length A215231. The lower end semiprimes are given in A215232.

Crossrefs

Cf. A001358 (semiprimes), A131109, A215231, A215232.

A065516 Differences between products of 2 primes.

Original entry on oeis.org

2, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 1, 3, 1, 7, 3, 2, 4, 2, 1, 4, 3, 4, 5, 3, 5, 3, 1, 1, 4, 2, 1, 1, 11, 5, 4, 3, 1, 2, 1, 1, 6, 4, 1, 7, 1, 1, 2, 1, 9, 3, 1, 2, 5, 3, 8, 1, 5, 2, 2, 7, 7, 1, 1, 2, 1, 3, 4, 1, 1, 2, 1, 1, 2, 5, 9, 2, 10, 2, 4, 1, 5, 3, 3, 2, 7, 4, 9, 2, 2, 4, 3, 1, 2, 1, 1, 2, 4, 5, 5, 2, 2, 3, 1, 2
Offset: 1

Views

Author

Lior Manor, Nov 27 2001

Keywords

Comments

See A215231 and A085809 for record values and where they occur: A215231(n) = a(A085809(n)). - Reinhard Zumkeller, Mar 23 2014

Examples

			a(6) = A001358(7) - A001358(6) = 21 - 15 = 6.
		

Crossrefs

A166237 is the version for distinct primes.

Programs

  • Haskell
    a065516 n = a065516_list !! (n-1)
    a065516_list = zipWith (-) (tail a001358_list) a001358_list
    -- Reinhard Zumkeller, Mar 23 2014
  • Mathematica
    Differences[Select[Range[329], PrimeOmega[#] == 2 &]] (* Arkadiusz Wesolowski, Nov 24 2011 *)
  • PARI
    {spg(m)=local(a,b); a=0; b=4; for(n=5,m,if(bigomega(n) == 2,a=n; print1(a-b","); b=a; ))}
    

Formula

a(n) = A001358(n+1) - A001358(n).

Extensions

More terms from Jason Earls, Jul 24 2003

A085809 Indices of semiprimes where largest gap occurs. Or, positions of records in A065516.

Original entry on oeis.org

1, 2, 4, 6, 10, 34, 186, 422, 760, 1765, 4112, 4585, 8112, 8650, 8861, 75150, 223993, 327048, 712605, 1135940, 23958638, 42367759, 47848742, 54626559, 121984495, 157877985, 413509327, 798321315, 983679985, 1277946119, 2403158480
Offset: 1

Views

Author

Jason Earls, Jul 24 2003

Keywords

Comments

A215231(n) = A065516(a(n)). - Reinhard Zumkeller, Mar 23 2014

Crossrefs

Cf. A239674.

Programs

  • Haskell
    a085809 n = a085809_list !! (n-1)
    -- See A215231 for definition of a085809_list.
    -- Reinhard Zumkeller, Mar 23 2014
  • PARI
    {sgr(m)=local(a,b,rec,c); c=0; a=0; b=4; rec=0; for(n=5,m,if(bigomega(n)==2,c++; a=n; if(a-b>rec,rec=a-b; print1(c","); b=a,b=a; )))}
    

Extensions

a(19)-a(26) from Donovan Johnson, Jan 28 2009
a(27)-a(31) from Donovan Johnson, Apr 14 2010

A239673 Record values in A239656 (the first differences of sphenic numbers).

Original entry on oeis.org

12, 24, 27, 28, 33, 35, 43, 44, 46, 48, 50, 52, 60, 65, 70, 72, 79, 82, 92, 98
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Crossrefs

Programs

  • Haskell
    a239673 n = a239673_list !! (n-1)
    (a239673_list, a239674_list) = unzip $ (12, 1) : f 1 12 a239656_list where
       f i v (q:qs) | q > v = (q, i) : f (i + 1) q qs
                    | otherwise = f (i + 1) v qs
    -- Reinhard Zumkeller, Mar 23 2014
    
  • PARI
    lista(kmax) = {my(k1 = 30, d, dm = 0); forcomposite(k2 = k1 + 1, kmax, if(factor(k2)[,2] == [1,1,1]~, d = k2 - k1; if(d > dm, dm = d; print1(d, ", ")); k1 = k2));} \\ Amiram Eldar, May 19 2024

Formula

a(n) = A239656(A239674(n)).

Extensions

a(12)-a(20) from Amiram Eldar, May 19 2024
Showing 1-5 of 5 results.