cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215231 Increasing gaps between semiprimes.

Original entry on oeis.org

2, 3, 4, 6, 7, 11, 14, 19, 20, 24, 25, 28, 30, 32, 38, 47, 54, 55, 70, 74, 76, 82, 85, 87, 88, 95, 98, 107, 110, 112, 120, 123, 126, 146, 163, 166, 171, 174
Offset: 1

Views

Author

T. D. Noe, Aug 07 2012

Keywords

Comments

See A215232 and A217851 for the semiprimes that begin and end the gaps.
Records in A065516. - R. J. Mathar, Aug 09 2012
How long can these gaps be? In the Cramér model, with x = A215232(n), they are of length log(x)^2/log(log(x))(1 + o(1)) with probability 1. - Charles R Greathouse IV, Sep 07 2012
a(n) = A065516(A085809(n)). - Reinhard Zumkeller, Mar 23 2014

Examples

			4 is here because the difference between 10 and 14 is 4, and there is no smaller semiprimes with this property.
		

Crossrefs

Cf. A001358 (semiprimes), A131109, A215232, A217851.
Cf. A005250 (increasing gaps between primes).
Cf. A239673 (increasing gaps between sphenic numbers).

Programs

  • Haskell
    a215231 n = a215231_list !! (n-1)
    (a215231_list, a085809_list) = unzip $ (2, 1) : f 1 2 a065516_list where
       f i v (q:qs) | q > v = (q, i) : f (i + 1) q qs
                    | otherwise = f (i + 1) v qs
    -- Reinhard Zumkeller, Mar 23 2014
  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nextSemiprime[n_] := Module[{m = n + 1}, While[! SemiPrimeQ[m], m++]; m]; t = {{0, 0}}; s1 = nextSemiprime[1]; While[s1 < 10^7, s2 = nextSemiprime[s1]; d = s2 - s1; If[d > t[[-1, 1]], AppendTo[t, {d, s1}]; Print[{d, s1}]]; s1 = s2]; t = Rest[t]; Transpose[t][[1]]

Extensions

a(27)-a(31) from Donovan Johnson, Aug 07 2012
a(32)-a(38) from Donovan Johnson, Sep 20 2012

A239656 First differences of sphenic numbers, cf. A007304.

Original entry on oeis.org

12, 24, 4, 8, 24, 3, 5, 4, 16, 8, 16, 11, 5, 4, 8, 4, 4, 5, 27, 8, 1, 7, 8, 9, 3, 8, 7, 9, 3, 1, 4, 20, 8, 4, 23, 9, 3, 9, 4, 4, 11, 14, 3, 4, 4, 8, 8, 3, 1, 4, 1, 3, 4, 13, 10, 5, 4, 9, 11, 4, 8, 12, 12, 4, 21, 6, 13, 8, 8, 5, 3, 4, 4, 3, 1, 5, 3, 9, 11, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Comments

a(n) = A007304(n+1) - A007304(n);
see A239673 and A239674 for record values and where they occur: A239673(n) = a(A239674(n)).

Crossrefs

Cf. A065516.

Programs

  • Haskell
    a239656 n = a239656_list !! (n-1)
    a239656_list = zipWith (-) (tail a007304_list) a007304_list
  • Maple
    A007304 := proc(n)
        option remember;
        if n = 1 then
            30;
        else
            for a from procname(n-1)+1 do
                if numtheory[bigomega](a) =3 and nops(numtheory[factorset](a)) = 3 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    A239656 := proc(n)
        A007304(n+1)-A007304(n) ;
    end proc:
  • Mathematica
    With[{upto=1000},Differences[Sort[Select[Times@@@Subsets[Prime[ Range[ Ceiling[upto/6]]],{3}],#<=upto&]]]] (* Harvey P. Dale, Jan 08 2015 *)

A239674 Where records occur in A239656 (the first differences of sphenic numbers).

Original entry on oeis.org

1, 2, 19, 498, 2114, 8351, 8381, 59704, 233890, 291963, 1119181, 1507131, 1839746, 9768399, 40844982, 94852115, 138032741, 443653568, 453853664, 2491818901
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Crossrefs

Programs

  • Haskell
    a239674 n = a239674_list !! (n-1)
    -- See A239673 for definition of A239674_list.
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, (lim)^(1/3), forprime(q=p+1, sqrt(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); vecsort(Vec(v)) ; \\ A007304
    chk(lim) = my(v=list(lim), dv = vector(#v-1, k, v[k+1] - v[k]), r=0); for (i=1, #dv, if (dv[i] > r, r=dv[i]; print1(i, ", "));); \\ Michel Marcus, Sep 20 2023

Formula

A239656(a(n)) = A239673(n).

Extensions

a(12)-a(14) from Michel Marcus, Sep 20 2023
a(15)-a(20) from Amiram Eldar, May 19 2024
Showing 1-3 of 3 results.