cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085809 Indices of semiprimes where largest gap occurs. Or, positions of records in A065516.

Original entry on oeis.org

1, 2, 4, 6, 10, 34, 186, 422, 760, 1765, 4112, 4585, 8112, 8650, 8861, 75150, 223993, 327048, 712605, 1135940, 23958638, 42367759, 47848742, 54626559, 121984495, 157877985, 413509327, 798321315, 983679985, 1277946119, 2403158480
Offset: 1

Views

Author

Jason Earls, Jul 24 2003

Keywords

Comments

A215231(n) = A065516(a(n)). - Reinhard Zumkeller, Mar 23 2014

Crossrefs

Cf. A239674.

Programs

  • Haskell
    a085809 n = a085809_list !! (n-1)
    -- See A215231 for definition of a085809_list.
    -- Reinhard Zumkeller, Mar 23 2014
  • PARI
    {sgr(m)=local(a,b,rec,c); c=0; a=0; b=4; rec=0; for(n=5,m,if(bigomega(n)==2,c++; a=n; if(a-b>rec,rec=a-b; print1(c","); b=a,b=a; )))}
    

Extensions

a(19)-a(26) from Donovan Johnson, Jan 28 2009
a(27)-a(31) from Donovan Johnson, Apr 14 2010

A239656 First differences of sphenic numbers, cf. A007304.

Original entry on oeis.org

12, 24, 4, 8, 24, 3, 5, 4, 16, 8, 16, 11, 5, 4, 8, 4, 4, 5, 27, 8, 1, 7, 8, 9, 3, 8, 7, 9, 3, 1, 4, 20, 8, 4, 23, 9, 3, 9, 4, 4, 11, 14, 3, 4, 4, 8, 8, 3, 1, 4, 1, 3, 4, 13, 10, 5, 4, 9, 11, 4, 8, 12, 12, 4, 21, 6, 13, 8, 8, 5, 3, 4, 4, 3, 1, 5, 3, 9, 11, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Comments

a(n) = A007304(n+1) - A007304(n);
see A239673 and A239674 for record values and where they occur: A239673(n) = a(A239674(n)).

Crossrefs

Cf. A065516.

Programs

  • Haskell
    a239656 n = a239656_list !! (n-1)
    a239656_list = zipWith (-) (tail a007304_list) a007304_list
  • Maple
    A007304 := proc(n)
        option remember;
        if n = 1 then
            30;
        else
            for a from procname(n-1)+1 do
                if numtheory[bigomega](a) =3 and nops(numtheory[factorset](a)) = 3 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    A239656 := proc(n)
        A007304(n+1)-A007304(n) ;
    end proc:
  • Mathematica
    With[{upto=1000},Differences[Sort[Select[Times@@@Subsets[Prime[ Range[ Ceiling[upto/6]]],{3}],#<=upto&]]]] (* Harvey P. Dale, Jan 08 2015 *)

A239673 Record values in A239656 (the first differences of sphenic numbers).

Original entry on oeis.org

12, 24, 27, 28, 33, 35, 43, 44, 46, 48, 50, 52, 60, 65, 70, 72, 79, 82, 92, 98
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Crossrefs

Programs

  • Haskell
    a239673 n = a239673_list !! (n-1)
    (a239673_list, a239674_list) = unzip $ (12, 1) : f 1 12 a239656_list where
       f i v (q:qs) | q > v = (q, i) : f (i + 1) q qs
                    | otherwise = f (i + 1) v qs
    -- Reinhard Zumkeller, Mar 23 2014
    
  • PARI
    lista(kmax) = {my(k1 = 30, d, dm = 0); forcomposite(k2 = k1 + 1, kmax, if(factor(k2)[,2] == [1,1,1]~, d = k2 - k1; if(d > dm, dm = d; print1(d, ", ")); k1 = k2));} \\ Amiram Eldar, May 19 2024

Formula

a(n) = A239656(A239674(n)).

Extensions

a(12)-a(20) from Amiram Eldar, May 19 2024
Showing 1-3 of 3 results.