cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131128 Binomial transform of [1, 1, 5, 1, 5, 1, 5, ...].

Original entry on oeis.org

1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums of triangle A131129. - Emeric Deutsch, Jun 19 2007
For n >= 4, a(n) is the number of vertices in the dendrimer nanostar NS1[n-3] defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1). - Emeric Deutsch, May 17 2018

Examples

			a(3) = 20 = (1, 3, 3, 1) dot (1, 1, 5, 1) = (1 + 3 + 15 + 1).
		

References

  • B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. [From N. J. A. Sloane, Feb 07 2009]

Crossrefs

Programs

  • GAP
    Concatenation([1],List([1..30], n->3*2^n-4)); # Muniru A Asiru, May 17 2018
  • Maple
    1, seq(3*2^n-4, n = 1 .. 30); # Emeric Deutsch, Jun 19 2007
  • Mathematica
    CoefficientList[Series[(1-x+4x^2)/((1-x)(1-2x)),{x,0,40}],x] (* Vincenzo Librandi, Apr 11 2012 *)

Formula

a(n) = 3*2^n - 4 for n >= 1; a(0)=1. Formula follows by replacing [1,1,5,1,5,1,...] with [1,3-2,3+2,3-2,3+2,3-2,...]. - Emeric Deutsch, Jun 19 2007
G.f.: (1 - x + 4x^2)/((1-x)(1-2x)). - Emeric Deutsch, Jul 09 2007
Row sums of triangle A132047. - Gary W. Adamson, Aug 08 2007
a(n) = 2*a(n-1) + 4 for n >= 2, a(0)=1, a(1)=2. - Philippe Deléham, Sep 23 2009
a(n) = 2*A033484(n-1) for n>0. - R. J. Mathar, Feb 27 2019