cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A131130 Binomial transform of [1,1,7,1,7,1,7,1,...].

Original entry on oeis.org

1, 2, 10, 26, 58, 122, 250, 506, 1018, 2042, 4090, 8186, 16378, 32762, 65530, 131066, 262138, 524282, 1048570, 2097146, 4194298, 8388602, 16777210, 33554426, 67108858, 134217722, 268435450, 536870906, 1073741818, 2147483642
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

For n >= 3, number of vertices of 4,4'-bipyridinium dendrimers (see the Arjomanfar and Gholami reference, p. 71). - Emeric Deutsch, Apr 12 2015
Number of ways to color a (2n-1) X (2n-1) chess board in a "balanced" way. A coloring is called balanced if, within every square subgrid made up of k^2 cells for 1 <= k <= 2*n-1, the number of black cells differs from the number of white cells by at most one. It is problem 3 from the British Maths Olympiad 2020. - Ruediger Jehn, Jan 27 2021

Crossrefs

Cf. A095121 (bin transf 1,1,3,1,3,...), A131128 (bin transf 1,1,5,1,5,..), A131131.

Programs

  • Maple
    1, seq(4*2^n -6, n = 1..30);
  • Mathematica
    Join[{1},LinearRecurrence[{3,-2},{2,10},30]] (* Harvey P. Dale, Mar 07 2014 *)
    CoefficientList[Series[(1 -x +6x^2)/(1 -3x +2x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 08 2014 *)

Formula

Row sums of triangle A131131.
a(n) = 4*2^n - 6 for n >= 1; a(0)=1.
From Philippe Deléham, Jan 04 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n > 2; a(0)=1, a(1)=2, a(2)=10.
G.f.: (1-x+6*x^2) / (1-3*x+2*x^2). (End)
a(n) = 2*a(n-1) + 6 for n > 1, a(0)=1, a(1)=2. - Philippe Deléham, Sep 25 2009
E.g.f.: 3 - 6*exp(x) + 4*exp(2*x). - Stefano Spezia, Feb 05 2021

Extensions

Edited by Emeric Deutsch, Jul 12 2007

A154117 Expansion of (1 - x + 3*x^2)/((1-x)*(1-2*x)).

Original entry on oeis.org

1, 2, 7, 17, 37, 77, 157, 317, 637, 1277, 2557, 5117, 10237, 20477, 40957, 81917, 163837, 327677, 655357, 1310717, 2621437, 5242877, 10485757, 20971517, 41943037, 83886077, 167772157, 335544317, 671088637, 1342177277, 2684354557
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of 1,1,4,1,4,1,4,1,4,1,4,1,4,1,4,... - Philippe Deleham, Jan 05 2009

Crossrefs

Programs

  • Magma
    [1] cat [5*2^n-3 : n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
    
  • Mathematica
    Join[{1}, Table[ 5*2^(n - 1) - 3, {n, 1, 10}]] (* or *) Join[{1, 2, 7}, LinearRecurrence[{3, -2}, {17, 37}, 10]] (* G. C. Greubel, Sep 02 2016 *)
  • PARI
    a(n)=if(n, 5<<(n-1)-3, 1) \\ Charles R Greathouse IV, Sep 02 2016

Formula

From Philippe Deléham, Jan 05 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n > 2.
a(n) = 2*a(n-1) + 3, n > 1.
a(n) = 5*2^(n-1) - 3, n >= 1. (End)
E.g.f.: (1/2)*(3 - 6*exp(x) + 5*exp(2*x)). - G. C. Greubel, Sep 02 2016

Extensions

a(0) added by Philippe Deléham, Jan 05 2009

A132047 3*A007318 - 2*A103451 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 18, 12, 1, 1, 15, 30, 30, 15, 1, 1, 18, 45, 60, 45, 18, 1, 1, 21, 63, 105, 105, 63, 21, 1, 1, 24, 84, 168, 210, 168, 84, 24, 1, 1, 27, 108, 252, 378, 378, 252, 108, 27, 1, 1, 30, 135, 360, 630, 756, 630, 360, 135, 30, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 6, 1;
  1, 9, 9, 1;
  1, 12, 18, 12, 1;
  1, 15, 30, 30, 15, 1;
  1, 18, 45, 60, 45, 18, 1;
  ...
		

Crossrefs

Cf. A007318, A103451, A131128 (row sums).

Programs

  • PARI
    T(n, k) = my(bnk = binomial(n, k)); 3*bnk - 2*(bnk==1); \\ Michel Marcus, Jun 16 2022

Formula

a(n) = 3*A007318(n) - 2*A103451(n).
T(n,k) = 3*C(n,k)-2*(C(n,k-n)+C(n,-k)-C(0,n+k)), 0<=k<=n. [Eric Werley, Jul 01 2011]

Extensions

Corrected and extended by Roger L. Bagula, Nov 02 2008

A154251 Expansion of (1-x+7x^2)/((1-x)(1-2x)).

Original entry on oeis.org

1, 2, 11, 29, 65, 137, 281, 569, 1145, 2297, 4601, 9209, 18425, 36857, 73721, 147449, 294905, 589817, 1179641, 2359289, 4718585, 9437177, 18874361, 37748729, 75497465, 150994937, 301989881, 603979769, 1207959545, 2415919097
Offset: 0

Views

Author

Philippe Deléham, Jan 05 2009

Keywords

Comments

Binomial transform of 1,1,8,1,8,1,8,1,8,1,8,1,8,1,8,...

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{3,-2},{2,11}, 25]] (* or *) Join[{1},Table[9*2^(n-1) - 7, {n,1,25}]] (* G. C. Greubel, Sep 08 2016 *)
  • PARI
    Vec((1-x+7*x^2)/((1-x)*(1-2*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 3*a(n-1) - 2*a(n-2), n>2, with a(0)=1, a(1)=2, a(2)=11.
a(n) = 9*2^(n-1) - 7, n>0, with a(0)=1.
a(n) = 2*a(n-1) + 7, n>1, with a(0)=1, a(1)=2.
From G. C. Greubel, Sep 08 2016: (Start)
a(n) = 9*2^(n-1) - 7 for n >= 1.
E.g.f.: (1/2)*(9*exp(2*x) - 14*exp(x) + 7). (End)

A154252 Expansion of (1-x+8x^2)/((1-x)(1-2x)) .

Original entry on oeis.org

1, 2, 12, 32, 72, 152, 312, 632, 1272, 2552, 5112, 10232, 20472, 40952, 81912, 163832, 327672, 655352, 1310712, 2621432, 5242872, 10485752, 20971512, 41943032, 83886072, 167772152, 335544312, 671088632, 1342177272, 2684354552, 5368709112, 10737418232
Offset: 0

Views

Author

Philippe Deléham, Jan 05 2009

Keywords

Comments

Binomial transform of 1,1,9,1,9,1,9,1,9,1,9,1,9,1,9,...

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 2*a(n-2), n>2, with a(0)=1, a(1)=2, a(2)=12.
a(n) = 2*a(n-1) + 8, n>1, with a(0)=1, a(1)=2.
a(n) = 10*2^(n-1) - 8, n>=1, with a(0)=1.
E.g.f.: 5*exp(2*x) - 8*exp(x) + 4. - G. C. Greubel, Sep 08 2016

Extensions

Two terms corrected by Johannes W. Meijer, May 26 2011

A165751 a(n) = 4 - 3*2^n.

Original entry on oeis.org

1, -2, -8, -20, -44, -92, -188, -380, -764, -1532, -3068, -6140, -12284, -24572, -49148, -98300, -196604, -393212, -786428, -1572860, -3145724, -6291452, -12582908, -25165820, -50331644, -100663292, -201326588, -402653180, -805306364, -1610612732, -3221225468
Offset: 0

Views

Author

Philippe Deléham, Sep 26 2009

Keywords

Crossrefs

Cf. A131128.

Programs

  • Mathematica
    Table[4 - 3*2^n, {n, 0, 50}] (* or *) LinearRecurrence[{3,-2}, {1,-2}, 50] (* G. C. Greubel, Apr 07 2016 *)
  • PARI
    my(x='x+O('x^99)); Vec((1-5*x)/(1-3*x+2*x^2)) \\ Altug Alkan, Apr 07 2016

Formula

a(n) = 2*a(n-1) - 4, a(0)=1.
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-3)^(n-k).
G.f.: (1-5x)/(1-3x+2x^2).
From G. C. Greubel, Apr 07 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 4*exp(x) - 3*exp(2*x). (End)
a(n) = -A131128(n) for n>=1. - R. J. Mathar, Feb 27 2019

A131129 3*A007318 - 2*A097806, where A007318 = Pascal's triangle and A097806 = the pairwise operator.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 3, 9, 7, 1, 3, 12, 18, 10, 1, 3, 15, 30, 30, 13, 1, 3, 18, 45, 60, 45, 16, 1, 3, 21, 63, 105, 105, 63, 19, 1, 3, 24, 84, 168, 210, 168, 84, 22, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums = A131128: (1, 2, 8, 20, 44, 92, 188, 380, ...), the binomial transform of (1, 1, 5, 1, 5, 1, 5, ...). Triangle A131108 has row sums (1, 2, 6, 14, 30, 62, ...), the binomial transform of (1, 1, 3, 1, 3, 1, ...). Generalization: Given triangles generated from N*A007318 - (N-1)*A097806, row sums are binomial transforms of (1, 1, (2N-1), 1, (2N-1), 1, ...).
Triangle T(n,k), 0 <= k <= n, read by rows given by [1,2,-3,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007

Examples

			First few rows of the triangle:
  1;
  1,  1;
  3,  4,  1;
  3,  9,  7,  1;
  3, 12, 18, 10,  1;
  3, 15, 30, 30, 13,  1;
  ...
		

Crossrefs

Formula

G.f.: (1-x*y+2*x^2+2*x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015

A131131 4*A007318 - 3*A097806.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 4, 12, 9, 1, 4, 16, 24, 13, 1, 4, 20, 40, 40, 17, 1, 4, 24, 60, 80, 60, 21, 1, 4, 28, 84, 140, 140, 84, 25, 1, 4, 32, 112, 224, 280, 224, 112, 29, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums = A131130, (1, 2, 10, 26, 52, 98, 190, ...), the binomial transform of (1, 1, 7, 1, 7, 1, ...). Generally, triangles generated from N*A007318 - (N-1)*A097806 have row sums that are binomial transforms of (1, 1, (N-1), 1, (N-1), 1, ...). A095121 = (1, 2, 6, 14, 30, 62, ...), the binomial transform of (1, 1, 3, 1, 3, 1, ...) and = row sums of A131108.
Triangle T(n,k), 0 <= k <= n,read by rows given by [1,3,-4,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007

Examples

			First few rows of the triangle:
  1;
  1,  1;
  4,  5,  1;
  4, 12,  9,  1;
  4, 16, 24, 13,  1
  4, 20, 40, 40, 17,  1;
  ...
		

Crossrefs

Formula

4*A007318 - 3*A097806, where A007318 = Pascal's triangle and A097806 = the pairwise operator.
G.f.: (1-x*y+3*x^2+3*x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015

A296954 Expansion of x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).

Original entry on oeis.org

0, 1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468, 6442450940, 12884901884
Offset: 0

Views

Author

J. Devillet, Dec 22 2017

Keywords

Comments

Number of bisymmetric, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.
Apart from the offset the same as A131128. - R. J. Mathar, Jan 02 2018

Crossrefs

Cf. A296953.

Programs

  • Mathematica
    CoefficientList[Series[x (1 - x + 4 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* Michael De Vlieger, Dec 23 2017 *)
    LinearRecurrence[{3,-2},{0,1,2,8},40] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    concat(0, Vec(x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Dec 22 2017

Formula

a(n) = A296953(n)-2, a(0)=0, a(1)=1.
From Colin Barker, Dec 22 2017: (Start)
G.f.: x*(1 - x + 4*x^2) / ((1 - x)*(1 - 2*x)).
a(n) = 3*2^(n-1) - 4 for n>1.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)

Extensions

G.f. in the name replaced by a better g.f. by Colin Barker, Dec 23 2017

A154312 Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1/2,-1/2,0,0,0,0,0,0,0,...] DELTA [2,-1/2,-1/2,2,0,0,0,0,0,0,0 ...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 0, 7, 9, 0, 0, 0, 0, 15, 17, 0, 0, 0, 0, 0, 31, 33, 0, 0, 0, 0, 0, 0, 63, 65, 0, 0, 0, 0, 0, 0, 0, 127, 129, 0, 0, 0, 0, 0, 0, 0, 0, 255, 257, 0, 0, 0, 0, 0, 0, 0, 0, 0, 511, 513, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1023, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2047
Offset: 0

Views

Author

Philippe Deléham, Jan 07 2009

Keywords

Comments

Column sums give A003945.

Examples

			Triangle begins:
1;
0, 2;
0, 1, 3;
0, 0, 3, 5;
0, 0, 0, 7, 9;
0, 0, 0, 0, 15, 17; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A040000(n), A094373(n), A000079(n), A083329(n), A095121(n), A154117(n), A131128(n), A154118(n), A131130(n), A154251(n), A154252(n) for x = -1,0,1,2,3,4,5,6,7,8,9 respectively.
G.f.: (1-x*y+x^2*y-x^2*y^2)/(1-3*x*y+2*x^2*y^2). - Philippe Deléham, Nov 02 2013
T(n,k) = 3*T(n-1,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(2,0) = 0, T(2,1) = 1, T(2,2) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 02 2013
Showing 1-10 of 10 results.