cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A144706 Central coefficients of the triangle A132047.

Original entry on oeis.org

1, 6, 18, 60, 210, 756, 2772, 10296, 38610, 145860, 554268, 2116296, 8112468, 31201800, 120349800, 465352560, 1803241170, 7000818660, 27225405900, 106035791400, 413539586460, 1614773623320, 6312296891160, 24700292182800, 96742811049300, 379231819313256
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

Hankel transform is A144708.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022
    
  • Mathematica
    Table[3*Binomial[2n,n] -2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
  • PARI
    a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023
  • SageMath
    [3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
    

Formula

G.f.: 3/sqrt(1-4*x) - 2;
a(n) = 3*binomial(2*n, n) - 2*0^n.
From Philippe Deléham, Oct 30 2008: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A010686(k).
a(n) = Sum_{k=0..n} A106566(n,k)*A082505(k+1). (End)
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1). - R. J. Mathar, Nov 30 2012
E.g.f.: -2 + 3*exp(2*x)*BesselI(0, 2*x). - G. C. Greubel, Jun 16 2022

A144707 Diagonal sums of the triangle A132047.

Original entry on oeis.org

1, 1, 2, 7, 11, 22, 35, 61, 98, 163, 263, 430, 695, 1129, 1826, 2959, 4787, 7750, 12539, 20293, 32834, 53131, 85967, 139102, 225071, 364177, 589250, 953431, 1542683, 2496118, 4038803, 6534925, 10573730, 17108659, 27682391, 44791054, 72473447, 117264505
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Table[3*Fibonacci[n+1] -3 -(-1)^n +2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
  • PARI
    Vec((1-x^2+4*x^3+2*x^4) / ((1-x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
    
  • SageMath
    [3*fibonacci(n+1) -2 -2*((n+1)%2) +2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022

Formula

G.f.: (1 - x^2 + 4*x^3 + 2*x^4) / ((1 - x^2)*(1 - x - x^2)).
a(n) = 3*Fibonacci(n+1) - 3 - (-1)^n + 2*0^n.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>4. - Philippe Deléham, Dec 16 2008
From Colin Barker, Jul 12 2017: (Start)
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) - 4 for n>0 and even.
a(n) = (3*2^(-n-1)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)))/sqrt(5) - 2 for n odd.
(End)

A131128 Binomial transform of [1, 1, 5, 1, 5, 1, 5, ...].

Original entry on oeis.org

1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468
Offset: 0

Views

Author

Gary W. Adamson, Jun 16 2007

Keywords

Comments

Row sums of triangle A131129. - Emeric Deutsch, Jun 19 2007
For n >= 4, a(n) is the number of vertices in the dendrimer nanostar NS1[n-3] defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1). - Emeric Deutsch, May 17 2018

Examples

			a(3) = 20 = (1, 3, 3, 1) dot (1, 1, 5, 1) = (1 + 3 + 15 + 1).
		

References

  • B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. [From N. J. A. Sloane, Feb 07 2009]

Crossrefs

Programs

  • GAP
    Concatenation([1],List([1..30], n->3*2^n-4)); # Muniru A Asiru, May 17 2018
  • Maple
    1, seq(3*2^n-4, n = 1 .. 30); # Emeric Deutsch, Jun 19 2007
  • Mathematica
    CoefficientList[Series[(1-x+4x^2)/((1-x)(1-2x)),{x,0,40}],x] (* Vincenzo Librandi, Apr 11 2012 *)

Formula

a(n) = 3*2^n - 4 for n >= 1; a(0)=1. Formula follows by replacing [1,1,5,1,5,1,...] with [1,3-2,3+2,3-2,3+2,3-2,...]. - Emeric Deutsch, Jun 19 2007
G.f.: (1 - x + 4x^2)/((1-x)(1-2x)). - Emeric Deutsch, Jul 09 2007
Row sums of triangle A132047. - Gary W. Adamson, Aug 08 2007
a(n) = 2*a(n-1) + 4 for n >= 2, a(0)=1, a(1)=2. - Philippe Deléham, Sep 23 2009
a(n) = 2*A033484(n-1) for n>0. - R. J. Mathar, Feb 27 2019

A168623 Triangle read by rows: T(n, k) = [x^k]( 9*(1+x)^n - 8*(1 + x^n) ), with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 18, 1, 1, 27, 27, 1, 1, 36, 54, 36, 1, 1, 45, 90, 90, 45, 1, 1, 54, 135, 180, 135, 54, 1, 1, 63, 189, 315, 315, 189, 63, 1, 1, 72, 252, 504, 630, 504, 252, 72, 1, 1, 81, 324, 756, 1134, 1134, 756, 324, 81, 1, 1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 18,   1;
  1, 27,  27,    1;
  1, 36,  54,   36,    1;
  1, 45,  90,   90,   45,    1;
  1, 54, 135,  180,  135,   54,    1;
  1, 63, 189,  315,  315,  189,   63,    1;
  1, 72, 252,  504,  630,  504,  252,   72,   1;
  1, 81, 324,  756, 1134, 1134,  756,  324,  81,  1;
  1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1;
		

Crossrefs

Programs

  • Magma
    A168623:= func< n,k | k eq 0 or k eq n select 1 else 9*Binomial(n,k) >;
    [A168623(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=4}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    A168623[n_, k_]:= If[k==0 || k==n, 1, 9*Binomial[n,k]];
    Table[A168623[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 09 2025 *)
  • SageMath
    def A168623(n,k):
        if (k==0 or k==n): return 1
        else: return 9*binomial(n,k)
    print(flatten([[A168623(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 09 2025

Formula

From G. C. Greubel, Apr 09 2025: (Start)
T(n, k) = binomial(n,k)*( [k=0] + 9*[0 < k < n] + [k=n] ).
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 9*2^n - 16 + 8*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -8*(1 + (-1)^n) + 17*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = 9*A000045(n+1) - 4*(3 + (-1)^n) + 8*[n=0]. (End)

Extensions

Keyword:tabl and row sum formula added - The Assoc. Editors of the OEIS, Dec 05 2009

A168622 Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 14,   1;
  1, 21,  21,   1;
  1, 28,  42,  28,    1;
  1, 35,  70,  70,   35,    1;
  1, 42, 105, 140,  105,   42,    1;
  1, 49, 147, 245,  245,  147,   49,   1;
  1, 56, 196, 392,  490,  392,  196,  56,   1;
  1, 63, 252, 588,  882,  882,  588, 252,  63,  1;
  1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
		

Crossrefs

Columns (essentially): A008589 (k=1), A024966 (k=2).

Programs

  • Magma
    A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
    [A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
    (* Second program *)
    A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
    Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
  • SageMath
    def A168622(n,k):
        if k==0 or k==n: return 1
        else: return 7*binomial(n,k)
    print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025

Formula

From G. C. Greubel, Apr 10 2025: (Start)
T(n, k) = 7*binomial(n, k), with T(n, 0) = T(n, n) = 1.
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 2*A048489(n-1) + 6*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -6*(1 + (-1)^n) + 13*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = A022090(n+1) - 3*(3 + (-1)^n) + 6*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (14/sqrt(3))*(-1)^n*cos((4*n+1)*Pi/6) - 6*(1 + (-1)^n*cos(n*Pi/2)) + 6*[n=0]. (End)

A168621 Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Comments

Row 0 is 1, and row n gives the coefficients in the expansion of (x + 1)^n + (n - 1)!*((x + 1)^n - x^n -1). - Franck Maminirina Ramaharo, Dec 22 2018

Examples

			Triangle begins:
  1;
  1,     1;
  1,     4,      1;
  1,     9,      9,      1;
  1,    28,     42,     28,      1;
  1,   125,    250,    250,    125,      1;
  1,   726,   1815,   2420,   1815,    726,      1;
  1,  5047,  15141,  25235,  25235,  15141,   5047,     1;
  1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)];
    Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
  • Maxima
    T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */

Formula

From Franck Maminirina Ramaharo, Dec 22 2018: (Start)
T(n,k) = A007318(n,k) + A219570(n,k) for 1 <= k <= n - 1, n >= 2.
E.g.f.: exp((1 + x)*y) + log((1 - y)*(1 - x*y)/(1 - (1 + x)*y)). (End)

Extensions

Edited by Franck Maminirina Ramaharo, Dec 22 2018 (previous definition and examples were the same as A168620, but with different entries, as pointed out by R. J. Mathar, Oct 21 2012)
Showing 1-6 of 6 results.