A144706
Central coefficients of the triangle A132047.
Original entry on oeis.org
1, 6, 18, 60, 210, 756, 2772, 10296, 38610, 145860, 554268, 2116296, 8112468, 31201800, 120349800, 465352560, 1803241170, 7000818660, 27225405900, 106035791400, 413539586460, 1614773623320, 6312296891160, 24700292182800, 96742811049300, 379231819313256
Offset: 0
-
[n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022
-
Table[3*Binomial[2n,n] -2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
-
a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023
-
[3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
A144707
Diagonal sums of the triangle A132047.
Original entry on oeis.org
1, 1, 2, 7, 11, 22, 35, 61, 98, 163, 263, 430, 695, 1129, 1826, 2959, 4787, 7750, 12539, 20293, 32834, 53131, 85967, 139102, 225071, 364177, 589250, 953431, 1542683, 2496118, 4038803, 6534925, 10573730, 17108659, 27682391, 44791054, 72473447, 117264505
Offset: 0
-
Table[3*Fibonacci[n+1] -3 -(-1)^n +2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
-
Vec((1-x^2+4*x^3+2*x^4) / ((1-x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
-
[3*fibonacci(n+1) -2 -2*((n+1)%2) +2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
A131128
Binomial transform of [1, 1, 5, 1, 5, 1, 5, ...].
Original entry on oeis.org
1, 2, 8, 20, 44, 92, 188, 380, 764, 1532, 3068, 6140, 12284, 24572, 49148, 98300, 196604, 393212, 786428, 1572860, 3145724, 6291452, 12582908, 25165820, 50331644, 100663292, 201326588, 402653180, 805306364, 1610612732, 3221225468
Offset: 0
a(3) = 20 = (1, 3, 3, 1) dot (1, 1, 5, 1) = (1 + 3 + 15 + 1).
- B. Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. [From N. J. A. Sloane, Feb 07 2009]
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
Concatenation([1],List([1..30], n->3*2^n-4)); # Muniru A Asiru, May 17 2018
-
1, seq(3*2^n-4, n = 1 .. 30); # Emeric Deutsch, Jun 19 2007
-
CoefficientList[Series[(1-x+4x^2)/((1-x)(1-2x)),{x,0,40}],x] (* Vincenzo Librandi, Apr 11 2012 *)
A168623
Triangle read by rows: T(n, k) = [x^k]( 9*(1+x)^n - 8*(1 + x^n) ), with T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 18, 1, 1, 27, 27, 1, 1, 36, 54, 36, 1, 1, 45, 90, 90, 45, 1, 1, 54, 135, 180, 135, 54, 1, 1, 63, 189, 315, 315, 189, 63, 1, 1, 72, 252, 504, 630, 504, 252, 72, 1, 1, 81, 324, 756, 1134, 1134, 756, 324, 81, 1, 1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 27, 27, 1;
1, 36, 54, 36, 1;
1, 45, 90, 90, 45, 1;
1, 54, 135, 180, 135, 54, 1;
1, 63, 189, 315, 315, 189, 63, 1;
1, 72, 252, 504, 630, 504, 252, 72, 1;
1, 81, 324, 756, 1134, 1134, 756, 324, 81, 1;
1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1;
-
A168623:= func< n,k | k eq 0 or k eq n select 1 else 9*Binomial(n,k) >;
[A168623(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2025
-
(* First program *)
p[x_, n_]:= With[{m=4}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
Table[CoefficientList[p[x,n], x], {n,0,10}]//Flatten
(* Second program *)
A168623[n_, k_]:= If[k==0 || k==n, 1, 9*Binomial[n,k]];
Table[A168623[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 09 2025 *)
-
def A168623(n,k):
if (k==0 or k==n): return 1
else: return 9*binomial(n,k)
print(flatten([[A168623(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 09 2025
Keyword:tabl and row sum formula added - The Assoc. Editors of the OEIS, Dec 05 2009
A168622
Triangle read by rows: T(n, k) = [x^k]( 7*(1+x)^n - 6*(1+x^n) ) with T(0, 0) = 1.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 21, 21, 1, 1, 28, 42, 28, 1, 1, 35, 70, 70, 35, 1, 1, 42, 105, 140, 105, 42, 1, 1, 49, 147, 245, 245, 147, 49, 1, 1, 56, 196, 392, 490, 392, 196, 56, 1, 1, 63, 252, 588, 882, 882, 588, 252, 63, 1, 1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 21, 21, 1;
1, 28, 42, 28, 1;
1, 35, 70, 70, 35, 1;
1, 42, 105, 140, 105, 42, 1;
1, 49, 147, 245, 245, 147, 49, 1;
1, 56, 196, 392, 490, 392, 196, 56, 1;
1, 63, 252, 588, 882, 882, 588, 252, 63, 1;
1, 70, 315, 840, 1470, 1764, 1470, 840, 315, 70, 1;
-
A168622:= func< n,k | k eq 0 or k eq n select 1 else 7*Binomial(n,k) >;
[A168622(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2025
-
(* First program *)
p[x_, n_]:= With[{m=3}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten
(* Second program *)
A168622[n_, k_]:= If[k==0 || k==n, 1, 7*Binomial[n,k]];
Table[A168622[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2025 *)
-
def A168622(n,k):
if k==0 or k==n: return 1
else: return 7*binomial(n,k)
print(flatten([[A168622(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 10 2025
A168621
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 28, 42, 28, 1;
1, 125, 250, 250, 125, 1;
1, 726, 1815, 2420, 1815, 726, 1;
1, 5047, 15141, 25235, 25235, 15141, 5047, 1;
1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1;
...
-
p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)];
Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
-
T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */
Showing 1-6 of 6 results.
Comments