cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154252 Expansion of (1-x+8x^2)/((1-x)(1-2x)) .

Original entry on oeis.org

1, 2, 12, 32, 72, 152, 312, 632, 1272, 2552, 5112, 10232, 20472, 40952, 81912, 163832, 327672, 655352, 1310712, 2621432, 5242872, 10485752, 20971512, 41943032, 83886072, 167772152, 335544312, 671088632, 1342177272, 2684354552, 5368709112, 10737418232
Offset: 0

Views

Author

Philippe Deléham, Jan 05 2009

Keywords

Comments

Binomial transform of 1,1,9,1,9,1,9,1,9,1,9,1,9,1,9,...

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 2*a(n-2), n>2, with a(0)=1, a(1)=2, a(2)=12.
a(n) = 2*a(n-1) + 8, n>1, with a(0)=1, a(1)=2.
a(n) = 10*2^(n-1) - 8, n>=1, with a(0)=1.
E.g.f.: 5*exp(2*x) - 8*exp(x) + 4. - G. C. Greubel, Sep 08 2016

Extensions

Two terms corrected by Johannes W. Meijer, May 26 2011

A377615 a(n) is the number of iterations of x -> 2*x + 7 until (# composites reached) = (# primes reached), starting with prime(n).

Original entry on oeis.org

23, 7, 9, 1, 21, 1, 7, 1, 21, 1, 1, 1, 3, 1, 3, 19, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 1, 1, 1, 17, 1, 9, 17, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 15, 1, 1, 1, 9, 1, 1, 1, 1, 3, 17, 1, 1, 1, 1, 15, 1, 11, 1, 1, 1, 5, 1, 1, 11, 1, 1, 1, 1, 1, 1, 23, 1, 1, 11, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2024

Keywords

Comments

For a guide to related sequences, see A377609.

Examples

			Starting with prime(1) = 2, we have 2*2+7 = 11, then 2*11+7 = 29, etc., resulting in a chain 2, 11, 29, 65, 137, 281, 569, 1145, 2297, 4601, 9209, 18425, 36857, 73721, 147449, 294905, 589817, 1179641, 2359289, 4718585, 9437177, 18874361, 37748729, 75497465 having 24 primes and 24 composites. Since every initial subchain has fewer composites than primes, a(1) =   24-1 = 23. (For more terms from the mapping x -> 2x+7, see A154251.)
		

Crossrefs

Programs

  • Mathematica
    chain[{start_, u_, v_}] := NestWhile[Append[#, u*Last[#] + v] &, {start}, !
         Count[#, ?PrimeQ] == Count[#, ?(! PrimeQ[#] &)] &];
    chain[{Prime[1], 2, 7}]
    Map[Length[chain[{Prime[#], 2, 7}]] &, Range[100]] - 1
    (* Peter J. C. Moses Oct 31 2024 *)

A154312 Triangle T(n,k), 0<=k<=n, read by rows, given by [0,1/2,-1/2,0,0,0,0,0,0,0,...] DELTA [2,-1/2,-1/2,2,0,0,0,0,0,0,0 ...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 0, 3, 5, 0, 0, 0, 7, 9, 0, 0, 0, 0, 15, 17, 0, 0, 0, 0, 0, 31, 33, 0, 0, 0, 0, 0, 0, 63, 65, 0, 0, 0, 0, 0, 0, 0, 127, 129, 0, 0, 0, 0, 0, 0, 0, 0, 255, 257, 0, 0, 0, 0, 0, 0, 0, 0, 0, 511, 513, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1023, 1025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2047
Offset: 0

Views

Author

Philippe Deléham, Jan 07 2009

Keywords

Comments

Column sums give A003945.

Examples

			Triangle begins:
1;
0, 2;
0, 1, 3;
0, 0, 3, 5;
0, 0, 0, 7, 9;
0, 0, 0, 0, 15, 17; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A040000(n), A094373(n), A000079(n), A083329(n), A095121(n), A154117(n), A131128(n), A154118(n), A131130(n), A154251(n), A154252(n) for x = -1,0,1,2,3,4,5,6,7,8,9 respectively.
G.f.: (1-x*y+x^2*y-x^2*y^2)/(1-3*x*y+2*x^2*y^2). - Philippe Deléham, Nov 02 2013
T(n,k) = 3*T(n-1,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(2,0) = 0, T(2,1) = 1, T(2,2) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 02 2013

A370882 Square array T(n,k) = 9*2^k - n read by ascending antidiagonals.

Original entry on oeis.org

9, 8, 18, 7, 17, 36, 6, 16, 35, 72, 5, 15, 34, 71, 144, 4, 14, 33, 70, 143, 288, 3, 13, 32, 69, 142, 287, 576, 2, 12, 31, 68, 141, 286, 575, 1152, 1, 11, 30, 67, 140, 285, 574, 1151, 2304, 0, 10, 29, 66, 139, 284, 573, 1150, 2303, 4608, -1, 9, 28, 65, 138, 283, 572, 1149, 2302, 4607, 9216
Offset: 0

Views

Author

Paul Curtz, Mar 05 2024

Keywords

Comments

Just after A367559 and A368826.

Examples

			Table begins:
       k=0  1  2  3   4   5
  n=0:   9 18 36 72 144 288 ...
  n=1:   8 17 35 71 143 287 ...
  n=2:   7 16 34 70 142 286 ...
  n=3:   6 15 33 69 141 285 ...
  n=4:   5 14 32 68 140 284 ...
  n=5:   4 13 31 67 139 283 ...
Every line has the signature (3,-2). For n=1: 3*17 - 2*8 = 35.
Main diagonal's difference table:
  9   17   34   69   140   283   570  1145  ...  =  b(n)
  8   17   35   71   143   287   575  1151  ...  =  A052996(n+2)
  9   18   36   72   144   288   576  1152  ...  =  A005010(n)
  ...
b(n+1) - 2*b(n) = A023443(n).
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 9*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)

Formula

T(0,k) = 9*2^k = A005010(k);
T(1,k) = 9*2^k - 1 = A052996(k+2);
T(2,k) = 9*2^k - 2 = A176449(k);
T(3,k) = 9*2^k - 3 = 3*A083329(k);
T(4,k) = 9*2^k - 4 = A053209(k);
T(5,k) = 9*2^k - 5 = A304383(k+3);
T(6,k) = 9*2^k - 6 = 3*A033484(k);
T(7,k) = 9*2^k - 7 = A154251(k+1);
T(8,k) = 9*2^k - 8 = A048491(k);
T(9,k) = 9*2^k - 9 = 3*A000225(k).
G.f.: (9 - 9*y + x*(11*y - 10))/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Mar 17 2024
Showing 1-4 of 4 results.