cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131205 a(n) = a(n-1) + a(floor(n/2)) + a(ceiling(n/2)).

Original entry on oeis.org

1, 3, 7, 13, 23, 37, 57, 83, 119, 165, 225, 299, 393, 507, 647, 813, 1015, 1253, 1537, 1867, 2257, 2707, 3231, 3829, 4521, 5307, 6207, 7221, 8375, 9669, 11129, 12755, 14583, 16613, 18881, 21387, 24177, 27251, 30655, 34389, 38513, 43027, 47991
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 22 2007

Keywords

Comments

From Gary W. Adamson, Dec 16 2009: (Start)
Let M = an infinite lower triangular matrix with (1, 3, 4, 4, 4, ...) in every column shifted down twice, with the rest zeros:
1;
3, 0;
4, 1, 0;
4, 3, 0, 0;
4, 4, 1, 0, 0;
4, 4, 3, 0, 0, 0;
...
A131205 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. (End)
The subsequence of primes in this sequence begins with 5 in a row: 3, 7, 13, 23, 37, 83, 647, 1867, 2707, 88873, 388837, 655121, 754903, 928621, 1062443. - Jonathan Vos Post, Apr 25 2010

Crossrefs

Cf. A000123, A008619. Bisection of A033485.

Programs

  • Haskell
    a131205 n = a131205_list !! (n-1)
    a131205_list = scanl1 (+) a000123_list -- Reinhard Zumkeller, Oct 10 2013
  • Maple
    A[1]:= 1:
    for n from 2 to 100 do A[n]:= A[n-1] + A[floor(n/2)] + A[ceil(n/2)] od:
    seq(A[n],n=1..100); # Robert Israel, Sep 06 2016
  • Mathematica
    Nest[Append[#1, #1[[-1]] + #1[[Floor@ #3]] + #[[Ceiling@ #3]] ] & @@ {#1, #2, #2/2} & @@ {#, Length@ # + 1} &, {1}, 42] (* Michael De Vlieger, Jan 16 2020 *)

Formula

Partial sums of A000123. - Gary W. Adamson, Oct 26 2007
G.f.: r(x) * r(x^2) * r(x^4) * r(x^8) * ... where r(x) = (1 + 3x + 4x^2 + 4x^3 + 4x^4 + ...) is the g.f. of A113311. - Gary W. Adamson, Sep 01 2016
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jun 05 2017
a(n) = A033485(2n-1). - Jean-Paul Allouche, Aug 11 2021