A131215 Numbers which are both 11-gonal and centered 11-gonal.
1, 606, 241396, 96075211, 38237692791, 15218505655816, 6056927013322186, 2410641732796574421, 959429352726023297581, 381850471743224475863026, 151975528324450615370186976, 60485878422659601692858553631
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..380
- Index entries for linear recurrences with constant coefficients, signature (399,-399,1).
Crossrefs
Cf. A128922.
Programs
-
GAP
a:=[1,606,241396];; for n in [4..20] do a[n]:=399*a[n-1]-399*a[n-2] +a[n-3]; od; a; # G. C. Greubel, Dec 06 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); Coefficients(R!( x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)) )); // G. C. Greubel, Dec 06 2019 -
Maple
seq(coeff(series(x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Dec 06 2019
-
Mathematica
LinearRecurrence[{399,-399,1},{1,606,241396},20] (* Harvey P. Dale, Mar 04 2015 *)
-
PARI
my(x='x+O('x^20)); Vec(x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2))) \\ G. C. Greubel, Dec 06 2019
-
Sage
def A131215_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+207*x+x^2)/((1-x)*(1-398*x+x^2)) ).list() a=A131215_list(20); a[1:] # G. C. Greubel, Dec 06 2019
Formula
a(n+2) = 398*a(n+1) - a(n) + 209.
a(n+1) = 199*a(n) + 209/2 + (5/2)*sqrt(6336*a(n)^2 + 6688*a(n) + 1617).
G.f.: z*(1 +207*z +z^2)/((1-z)*(1-398*z+z^2)).
a(1)=1, a(2)=606, a(3)=241396, a(n) = 399*a(n-1) - 399*a(n-2) + a(n-3). - Harvey P. Dale, Mar 04 2015
Extensions
More terms from Paolo P. Lava, Sep 26 2008
Comments