A131222 Exponential Riordan array [1, log((1-x)/(1-2x))].
1, 0, 1, 0, 3, 1, 0, 14, 9, 1, 0, 90, 83, 18, 1, 0, 744, 870, 275, 30, 1, 0, 7560, 10474, 4275, 685, 45, 1, 0, 91440, 143892, 70924, 14805, 1435, 63, 1, 0, 1285200, 2233356, 1274196, 324289, 41160, 2674, 84, 1
Offset: 0
Examples
Number triangle starts: 1, 0, 1; 0, 3, 1; 0, 14, 9, 1; 0, 90, 83, 18, 1; 0, 744, 870, 275, 30, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Paul Barry, Exponential Riordan arrays and permutation enumeration,Journal of Integer Sequences, Vol. 13 (2010).
Programs
-
Maple
RioExp := (d,h,n,k) -> coeftayl(d*h^k, x=0,n)*n!/k!: A131222 := (n,k) -> RioExp(1,log((1-x)/(1-2*x)),n,k): seq(print(seq(A131222(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015 # The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n=0,1,n!*(2^(n+1)-1)), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[If[# == 0, 1, #! (2^(#+1) - 1)]&, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
Maxima
T(n,m):=if n=0 and m=0 then 1 else n!*sum((stirling1(k,m)*2^(n-k)*binomial(n-1,k-1))/k!,k,m,n); /* Vladimir Kruchinin, Sep 27 2012 */
-
Sage
def Lah(n, k): if n == k: return 1 if k<0 or k>n: return 0 return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1)) matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number1) # as a square matrix Peter Luschny, Apr 12 2015 # alternatively:
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: A029767(n+1), 10) # Peter Luschny, Jan 18 2016
Formula
Row sums are A002866.
Second column is A029767.
T(n,m) = n! * Sum_{k=m..n} Stirling1(k,m)*2^(n-k)*binomial(n-1,k-1)/k!, n >= m >= 0. - Vladimir Kruchinin, Sep 27 2012
Comments