A131253 Row sums of triangle A131252.
1, 3, 8, 17, 34, 64, 117, 209, 368, 641, 1108, 1904, 3257, 5551, 9432, 15985, 27030, 45616, 76845, 129245, 217056, 364033, 609768, 1020192, 1705009, 2846619, 4748072, 7912529, 13174858, 21919456, 36440613, 60538409, 100503632, 166744961, 276476092, 458151440
Offset: 0
Keywords
Examples
a(3) = 17 = sum of row 3 terms of A131252: (7 + 6 + 3 + 1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 4, 0, -1)
Crossrefs
Row sums of A131252.
Programs
-
Magma
I:=[1,3,8,17,34,64]; [n le 6 select I[n] else 4*Self(n-1)- 4*Self(n-2)-2*Self(n-3)+4*Self(n-4)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 10 2018
-
Mathematica
LinearRecurrence[{4, -4, -2, 4, 0, -1}, {1, 3, 8, 17, 34, 64}, 40] (* Vincenzo Librandi, Aug 10 2018 *)
-
PARI
Vec((1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2) + O(x^40)) \\ Andrew Howroyd, Aug 09 2018
-
PARI
a(n)={sum(k=0, n, (k+1)*sum(i=0, k, binomial(n-k, k-i)))} \\ Andrew Howroyd, Aug 09 2018
Formula
From Andrew Howroyd, Aug 09 2018: (Start)
a(n) = Sum_{k=0..n} (k+1)*(Sum_{i=0..k} binomial(n-k, k-i)).
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: (1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2).
(End)
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 09 2018
Comments