cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131253 Row sums of triangle A131252.

Original entry on oeis.org

1, 3, 8, 17, 34, 64, 117, 209, 368, 641, 1108, 1904, 3257, 5551, 9432, 15985, 27030, 45616, 76845, 129245, 217056, 364033, 609768, 1020192, 1705009, 2846619, 4748072, 7912529, 13174858, 21919456, 36440613, 60538409, 100503632, 166744961, 276476092, 458151440
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Examples

			a(3) = 17 = sum of row 3 terms of A131252: (7 + 6 + 3 + 1).
		

Crossrefs

Row sums of A131252.

Programs

  • Magma
    I:=[1,3,8,17,34,64]; [n le 6 select I[n] else 4*Self(n-1)- 4*Self(n-2)-2*Self(n-3)+4*Self(n-4)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 10 2018
  • Mathematica
    LinearRecurrence[{4, -4, -2, 4, 0, -1}, {1, 3, 8, 17, 34, 64}, 40] (* Vincenzo Librandi, Aug 10 2018 *)
  • PARI
    Vec((1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2) + O(x^40)) \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    a(n)={sum(k=0, n, (k+1)*sum(i=0, k, binomial(n-k, k-i)))} \\ Andrew Howroyd, Aug 09 2018
    

Formula

From Andrew Howroyd, Aug 09 2018: (Start)
a(n) = Sum_{k=0..n} (k+1)*(Sum_{i=0..k} binomial(n-k, k-i)).
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: (1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 09 2018

A131251 A000012 * A052509.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 7, 3, 1, 6, 15, 14, 7, 3, 1, 7, 21, 25, 15, 7, 3, 1, 8, 28, 41, 30, 15, 7, 3, 1, 9, 36, 63, 56, 31, 15, 7, 3, 1, 10, 45, 92, 98, 62, 31, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A001924: (1, 3, 7, 14, 26, 46, 79, ...). A131252 = A052509 * A000012.
From Clark Kimberling, Feb 07 2011: (Start)
When formatted as a rectangle R with northwest corner
1, 2, 3, 4, 5, 6, ...
1, 3, 6, 10, 15, 21, ...
1, 3, 7, 14, 25, 41, ...
1, 3, 7, 15, 30, 56, ...
1, 3, 7, 15, 31, 62, ...
...
the following properties hold:
R is the accumulation array of the transpose of A052553 (a version of Pascal's triangle); see A144112 for the definition of accumulation array.
row 1: A000027
row 2: A000217
row 3: A004006
row 4: A055795
row 5: A057703
row 6: A115567
limiting row: A000225
antidiagonal sums: A001924.
(End)

Examples

			First few rows of the triangle:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  3,  1;
  5, 10,  7,  3,  1;
  6, 15, 14,  7,  3,  1;
  7, 21, 25, 15,  7,  3,  1;
  ...
		

Crossrefs

Formula

A000012 * A052509 as infinite lower triangular matrices.
Showing 1-2 of 2 results.