cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131252 A052509 * A000012.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 7, 6, 3, 1, 12, 11, 7, 3, 1, 20, 19, 14, 7, 3, 1, 33, 32, 26, 15, 7, 3, 1, 54, 53, 46, 30, 15, 7, 3, 1, 88, 87, 79, 57, 31, 15, 7, 3, 1, 143, 142, 133, 104, 62, 31, 15, 7, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Left border = A000071, Fibonacci numbers - 1, starting with F(3): (1, 2, 4, 7, 12, ...). Row sums = A131253: (1, 3, 8, 17, 34, 64, 117, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
   4,  3,  1;
   7,  6,  3,  1;
  12, 11,  7,  3,  1;
  20, 19, 14,  7,  3,  1;
  33, 32, 26, 15,  7,  3,  1;
  ...
		

Crossrefs

Formula

A052509 * A000012, where A000012 = (1; 1,1; 1,1,1; ...).

A131412 a(n) = n*(Fibonacci(n) - 1) + Fibonacci(n + 2) - 1.

Original entry on oeis.org

1, 2, 7, 15, 32, 62, 117, 214, 385, 683, 1200, 2092, 3625, 6250, 10731, 18359, 31312, 53258, 90365, 152990, 258501, 435987, 734112, 1234200, 2072017, 3474002, 5817487, 9730719, 16258880, 27139478, 45258885, 75408742, 125538505, 208828475, 347119056, 576580804
Offset: 1

Views

Author

Gary W. Adamson, Jul 08 2007

Keywords

Examples

			a(4) = 15 = sum of row 4, triangle A131411; (3 + 3 + 4 + 5).
		

Crossrefs

Row sums of A131411.

Programs

  • GAP
    F:=Fibonacci;; List([1..40], n-> F(n+2)+n*F(n)-(n+1)); # G. C. Greubel, Jul 13 2019
  • Magma
    F:=Fibonacci; [F(n+2)+n*F(n)-(n+1): n in [1..40]]; // G. C. Greubel, Jul 13 2019
    
  • Mathematica
    With[{F=Fibonacci}, Table[F[n+2]+n*F[n]-(n+1), {n,40}]] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    a(n) = n*(fibonacci(n) - 1) + fibonacci(n+2) - 1; \\ Andrew Howroyd, Aug 10 2018
    
  • PARI
    Vec((1 - 2*x + 3*x^2 - 3*x^3)/((1 - x)^2*(1 - x - x^2)^2) + O(x^40)) \\ Andrew Howroyd, Aug 10 2018
    
  • Sage
    f=fibonacci; [f(n+2)+n*f(n)-(n+1) for n in (1..40)] # G. C. Greubel, Jul 13 2019
    

Formula

From Andrew Howroyd, Aug 10 2018: (Start)
a(n) = n*(Fibonacci(n) - 1) + Sum_{k=1..n} Fibonacci(k).
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: x*(1 - 2*x + 3*x^2 - 3*x^3)/((1 - x)^2*(1 - x - x^2)^2).
(End)

Extensions

Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 10 2018
Showing 1-2 of 2 results.