cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131253 Row sums of triangle A131252.

Original entry on oeis.org

1, 3, 8, 17, 34, 64, 117, 209, 368, 641, 1108, 1904, 3257, 5551, 9432, 15985, 27030, 45616, 76845, 129245, 217056, 364033, 609768, 1020192, 1705009, 2846619, 4748072, 7912529, 13174858, 21919456, 36440613, 60538409, 100503632, 166744961, 276476092, 458151440
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Examples

			a(3) = 17 = sum of row 3 terms of A131252: (7 + 6 + 3 + 1).
		

Crossrefs

Row sums of A131252.

Programs

  • Magma
    I:=[1,3,8,17,34,64]; [n le 6 select I[n] else 4*Self(n-1)- 4*Self(n-2)-2*Self(n-3)+4*Self(n-4)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 10 2018
  • Mathematica
    LinearRecurrence[{4, -4, -2, 4, 0, -1}, {1, 3, 8, 17, 34, 64}, 40] (* Vincenzo Librandi, Aug 10 2018 *)
  • PARI
    Vec((1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2) + O(x^40)) \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    a(n)={sum(k=0, n, (k+1)*sum(i=0, k, binomial(n-k, k-i)))} \\ Andrew Howroyd, Aug 09 2018
    

Formula

From Andrew Howroyd, Aug 09 2018: (Start)
a(n) = Sum_{k=0..n} (k+1)*(Sum_{i=0..k} binomial(n-k, k-i)).
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6).
G.f.: (1 - x - x^3)/((1 - x)^2*(1 - x - x^2)^2).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 09 2018