cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131269 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=6.

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 35, 60, 101, 168, 277, 454, 741, 1206, 1959, 3178, 5151, 8344, 13511, 21872, 35401, 57292, 92713, 150026, 242761, 392810, 635595, 1028430, 1664051, 2692508, 4356587, 7049124, 11405741, 18454896, 29860669, 48315598, 78176301, 126491934
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums of triangles A131268 and A131270.
a(n)/a(n-1) tends to phi (A001622).

Examples

			a(4) = 11 = sum of row 4 terms of triangle A131268: (1 + 1 + 5 + 3 + 1), or the reversed terms of triangle A131270, row 4.
		

Crossrefs

Cf. A001595 (first differences).

Programs

  • GAP
    List([0..40], n-> 2*Fibonacci(n+2)-n-1); # G. C. Greubel, Jul 09 2019
  • Magma
    /* By the first comment: */ [&+[2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n]]: n in [0..40]]; /* Bruno Berselli, May 03 2012 */
    
  • Magma
    [2*Fibonacci(n+2)-n-1: n in [0..40]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 6}, 41] (* Bruno Berselli, May 03 2012 *)
    Table[2*Fibonacci[n+2]-n-1, {n,0,40}] (* G. C. Greubel, Jul 09 2019 *)
  • Maxima
    makelist(expand(((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2) )/(2^(n+1)*sqrt(5))-n-1), n, 0, 40); /* Bruno Berselli, May 03 2012 */
    
  • PARI
    Vec((1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2)+O(x^40)) \\ Bruno Berselli, May 03 2012
    
  • PARI
    vector(40, n, n--; 2*fibonacci(n+2)-n-1) \\ G. C. Greubel, Jul 09 2019
    
  • Python
    prpr = 1
    prev = 2
    for n in range(2,99):
        current = prpr + prev + n - 2
        print(prpr, end=',')
        prpr = prev
        prev = current  # Alex Ratushnyak, May 02 2012
    
  • Sage
    [2*fibonacci(n+2)-n-1 for n in (0..40)] # G. C. Greubel, Jul 09 2019
    

Formula

a(n) = a(n-2) + a(n-1) + n - 2 with n>1, a(0)=1, a(1)=2. - Alex Ratushnyak, May 02 2012
From Bruno Berselli, May 03 2012: (Start)
G.f.: (1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2). - Bruno Berselli, May 03 2012
a(n) = A001595(n+1) - n = A006355(n+3) - n - 1 = ((1+sqrt(5))^(n+2) - (1-sqrt(5))^(n+2))/(2^(n+1)*sqrt(5))-n-1. (End)

Extensions

Better definition and more terms from Bruno Berselli, May 03 2012