A131269 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=6.
1, 2, 3, 6, 11, 20, 35, 60, 101, 168, 277, 454, 741, 1206, 1959, 3178, 5151, 8344, 13511, 21872, 35401, 57292, 92713, 150026, 242761, 392810, 635595, 1028430, 1664051, 2692508, 4356587, 7049124, 11405741, 18454896, 29860669, 48315598, 78176301, 126491934
Offset: 0
Examples
a(4) = 11 = sum of row 4 terms of triangle A131268: (1 + 1 + 5 + 3 + 1), or the reversed terms of triangle A131270, row 4.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
List([0..40], n-> 2*Fibonacci(n+2)-n-1); # G. C. Greubel, Jul 09 2019
-
Magma
/* By the first comment: */ [&+[2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n]]: n in [0..40]]; /* Bruno Berselli, May 03 2012 */
-
Magma
[2*Fibonacci(n+2)-n-1: n in [0..40]]; // G. C. Greubel, Jul 09 2019
-
Mathematica
LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 6}, 41] (* Bruno Berselli, May 03 2012 *) Table[2*Fibonacci[n+2]-n-1, {n,0,40}] (* G. C. Greubel, Jul 09 2019 *)
-
Maxima
makelist(expand(((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2) )/(2^(n+1)*sqrt(5))-n-1), n, 0, 40); /* Bruno Berselli, May 03 2012 */
-
PARI
Vec((1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2)+O(x^40)) \\ Bruno Berselli, May 03 2012
-
PARI
vector(40, n, n--; 2*fibonacci(n+2)-n-1) \\ G. C. Greubel, Jul 09 2019
-
Python
prpr = 1 prev = 2 for n in range(2,99): current = prpr + prev + n - 2 print(prpr, end=',') prpr = prev prev = current # Alex Ratushnyak, May 02 2012
-
Sage
[2*fibonacci(n+2)-n-1 for n in (0..40)] # G. C. Greubel, Jul 09 2019
Formula
a(n) = a(n-2) + a(n-1) + n - 2 with n>1, a(0)=1, a(1)=2. - Alex Ratushnyak, May 02 2012
From Bruno Berselli, May 03 2012: (Start)
G.f.: (1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2). - Bruno Berselli, May 03 2012
Extensions
Better definition and more terms from Bruno Berselli, May 03 2012
Comments