cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131300 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=7.

Original entry on oeis.org

1, 2, 3, 7, 14, 27, 49, 86, 147, 247, 410, 675, 1105, 1802, 2931, 4759, 7718, 12507, 20257, 32798, 53091, 85927, 139058, 225027, 364129, 589202, 953379, 1542631, 2496062, 4038747, 6534865, 10573670, 17108595, 27682327, 44790986, 72473379, 117264433, 189737882
Offset: 0

Views

Author

Gary W. Adamson, Jun 27 2007

Keywords

Comments

Row sums of A131299 and A131301.
a(n)/a(n-1) tends to phi.

Examples

			a(4) = 14 = (1 + 1 + 7 + 4 + 1).
		

Crossrefs

Programs

  • Magma
    /* By first comment: */ [&+[3*Binomial(n-Floor((k+1)/2), Floor(k/2))-2: k in [0..n]]: n in [0..37]]; // Bruno Berselli, May 03 2012
    
  • Maple
    seq(add(3*binomial(floor((n+k)/2),k)-2,k=0..n),n=0..50); # Nathaniel Johnston, Jun 29 2011
  • Mathematica
    LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 7}, 38] (* Bruno Berselli, May 03 2012 *)
  • Maxima
    makelist(expand(3*((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2))/(2^(n+2)*sqrt(5))-2*(n+1)), n, 0, 37); /* Bruno Berselli, May 03 2012 */
  • PARI
    Vec((1-x-x^2+3*x^3)/((1-x-x^2)*(1-x)^2)+O(x^38)) \\ Bruno Berselli, May 03 2012
    

Formula

From Bruno Berselli, May 03 2012: (Start)
G.f.: (1-x-x^2+3*x^3)/((1-x-x^2)*(1-x)^2).
a(n) = (3*A131269(n)-n-1)/2.
a(n) = 3*((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2))/(2^(n+2)*sqrt(5))-2*(n+1). (End)
a(n) = 3*A000045(n+2)-2*(n+1). - R. J. Mathar, Mar 24 2018

Extensions

Terms after a(9) from Nathaniel Johnston, Jun 29 2011
New definition from Bruno Berselli, May 03 2012

A131268 Triangle read by rows: T(n,k) = 2*binomial(n-floor((k+1)/2),floor(k/2)) - 1, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 1, 7, 5, 5, 1, 1, 1, 9, 7, 11, 5, 1, 1, 1, 11, 9, 19, 11, 7, 1, 1, 1, 13, 11, 29, 19, 19, 7, 1, 1, 1, 15, 13, 41, 29, 39, 19, 9, 1, 1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1, 1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1, 1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums are in A131269. Reversal = triangle A131270.

Examples

			Triangle begins:
1;
1, 1;
1, 1,  1;
1, 1,  3,  1;
1, 1,  5,  3,  1;
1, 1,  7,  5,  5,  1;
1, 1,  9,  7, 11,  5,   1;
1, 1, 11,  9, 19, 11,   7,   1;
1, 1, 13, 11, 29, 19,  19,   7,   1;
1, 1, 15, 13, 41, 29,  39,  19,   9,  1;
1, 1, 17, 15, 55, 41,  69,  39,  29,  9,  1;
1, 1, 19, 17, 71, 55, 111,  69,  69, 29, 11,  1;
1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1;
...
		

Crossrefs

Programs

  • Magma
    [2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n], n in [0..14]]; // Bruno Berselli, May 03 2012
    
  • Maple
    T := proc (n, k) options operator, arrow; 2*binomial(n-floor((1/2)*k+1/2), floor((1/2)*k))-1 end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form. - Emeric Deutsch, Jul 15 2007
  • Mathematica
    Table[2*Binomial[n -Floor[(k+1)/2], Floor[k/2]] -1, {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    T(n,k) = 2*binomial(n- (k+1)\2, k\2) -1; \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    [[2*binomial(n -floor((k+1)/2), floor(k/2)) -1 for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 10 2019

Formula

Equals 2*A065941 - A000012, where A065941 = Pascal's triangle with repeated columns; and A000012 = (1; 1,1; 1,1,1;...) as an infinite lower triangular matrix.

Extensions

More terms from Emeric Deutsch, Jul 15 2007

A131270 Triangle T(n,k) = 2*A046854(n,k) - 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 5, 5, 7, 1, 1, 1, 5, 11, 7, 9, 1, 1, 1, 7, 11, 19, 9, 11, 1, 1, 1, 7, 19, 19, 29, 11, 13, 1, 1, 1, 9, 19, 39, 29, 41, 13, 15, 1, 1, 1, 9, 29, 39, 69, 41, 55, 15, 17, 1, 1, 1, 11, 29, 69, 69, 111, 55, 71, 17, 19, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A131269: {1, 2, 3, 6, 11, 20, 35, 60, 101, 168, ...}.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  1,  1;
  1,  3,  5,  1,  1;
  1,  5,  5,  7,  1,  1;
  1,  5, 11,  7,  9,  1,  1;
  1,  7, 11, 19,  9, 11,  1,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(Floor((n+k)/2), k) -1: k in [0..n]]:n in [0..12]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    Table[2*Binomial[Floor[(n+k)/2], k] - 1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2019 *)
  • PARI
    T(n,k) = 2*binomial((n+k)\2, k)-1; \\ G. C. Greubel, Jul 09 2019
    
  • Sage
    [[2*binomial(floor((n+k)/2), k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 09 2019

Formula

T(n,k) = 2*A046854(n,k) - 1.
Reversed triangle of A131268.

A210728 a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 7, 14, 27, 48, 83, 140, 233, 384, 629, 1026, 1669, 2710, 4395, 7122, 11535, 18676, 30231, 48928, 79181, 128132, 207337, 335494, 542857, 878378, 1421263, 2299670, 3720963, 6020664, 9741659, 15762356, 25504049, 41266440, 66770525, 108037002, 174807565
Offset: 0

Views

Author

Alex Ratushnyak, May 10 2012

Keywords

Crossrefs

Cf. A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf. A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf. A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf. A210729: a(n)=a(n-1)+a(n-2)+n+3, a(0)=1,a(1)=2.

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 2, a[n] == a[n - 1] + a[n - 2] + n + 2}, a, {n, 36}] (* Bruno Berselli, Jun 27 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+b+n+3}; NestList[nxt,{1,1,2},40][[;;,2]] (* Harvey P. Dale, Aug 26 2024 *)

Formula

G.f.: (1-x+3*x^2-2*x^3)/((1-x)^2*(1-x-x^2)). - Bruno Berselli, Jun 27 2012
a(n) = ((5+sqrt(5))*(1+sqrt(5))^(n+1)-(5-sqrt(5))*(1-sqrt(5))^(n+1))/(2^(n+1)*sqrt(5))-n-5. - Bruno Berselli, Jun 27 2012
a(n) = -n-5+A022112(n+1). R. J. Mathar, Jul 03 2012

A210729 a(n) = a(n-1) + a(n-2) + n + 3 with n>1, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 16, 31, 55, 95, 160, 266, 438, 717, 1169, 1901, 3086, 5004, 8108, 13131, 21259, 34411, 55692, 90126, 145842, 235993, 381861, 617881, 999770, 1617680, 2617480, 4235191, 6852703, 11087927, 17940664, 29028626, 46969326, 75997989, 122967353
Offset: 0

Views

Author

Alex Ratushnyak, May 10 2012

Keywords

Crossrefs

Cf. A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf. A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf. A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf. A210728: a(n)=a(n-1)+a(n-2)+n+2, a(0)=1,a(1)=2.

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> 2*F(n+3)+3*F(n+1)-n-6); # G. C. Greubel, Jul 09 2019
  • Magma
    [3*Fibonacci(n+1)+2*Fibonacci(n+3)-n-6: n in [0..40]]; // Vincenzo Librandi, Jul 18 2013
    
  • Mathematica
    Table[3*Fibonacci[n+1]+2*Fibonacci[n+3]-n-6,{n,0,40}] (* Vaclav Kotesovec, May 13 2012 *)
  • PARI
    vector(40, n, n--; f=fibonacci; 2*f(n+3)+3*f(n+1)-n-6) \\ G. C. Greubel, Jul 09 2019
    
  • Python
    prpr, prev = 1,2
    for n in range(2, 99):
        current = prev+prpr+n+3
        print(prpr, end=',')
        prpr = prev
        prev = current
    
  • Sage
    f=fibonacci; [2*f(n+3)+3*f(n+1)-n-6 for n in (0..40)] # G. C. Greubel, Jul 09 2019
    

Formula

G.f.: (1-x+4*x^2-3*x^3)/((1-x-x^2)*(1-x)^2).
a(n) = 3*Fibonacci(n+1)+2*Fibonacci(n+3)-n-6. - Vaclav Kotesovec, May 13 2012
a(n) = 2*Lucas(n+2) + Fibonacci(n+1) - (n+6). - G. C. Greubel, Jul 09 2019

A131373 A046854 + A065941 - A000012.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 10, 7, 10, 3, 1, 1, 4, 11, 14, 14, 11, 4, 1, 1, 4, 16, 15, 29, 15, 16, 4, 1, 1, 5, 17, 26, 35, 35, 26, 17, 5, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2007

Keywords

Comments

Row sums = A131269: (1, 2, 3, 6, 11, 20, 35, 60,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 5, 2, 1;
1, 3, 6, 6, 3, 1;
1, 3, 10, 7, 10, 3, 1;
1, 4, 11, 14, 14, 11, 4, 1;
1, 4, 16, 15, 29, 15, 16, 4, 1;
...
		

Crossrefs

Formula

A046854 + A065941 - A000012 as infinite lower triangular matrices.
Showing 1-6 of 6 results.