A131300
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=7.
Original entry on oeis.org
1, 2, 3, 7, 14, 27, 49, 86, 147, 247, 410, 675, 1105, 1802, 2931, 4759, 7718, 12507, 20257, 32798, 53091, 85927, 139058, 225027, 364129, 589202, 953379, 1542631, 2496062, 4038747, 6534865, 10573670, 17108595, 27682327, 44790986, 72473379, 117264433, 189737882
Offset: 0
a(4) = 14 = (1 + 1 + 7 + 4 + 1).
-
/* By first comment: */ [&+[3*Binomial(n-Floor((k+1)/2), Floor(k/2))-2: k in [0..n]]: n in [0..37]]; // Bruno Berselli, May 03 2012
-
seq(add(3*binomial(floor((n+k)/2),k)-2,k=0..n),n=0..50); # Nathaniel Johnston, Jun 29 2011
-
LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 7}, 38] (* Bruno Berselli, May 03 2012 *)
-
makelist(expand(3*((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2))/(2^(n+2)*sqrt(5))-2*(n+1)), n, 0, 37); /* Bruno Berselli, May 03 2012 */
-
Vec((1-x-x^2+3*x^3)/((1-x-x^2)*(1-x)^2)+O(x^38)) \\ Bruno Berselli, May 03 2012
A131268
Triangle read by rows: T(n,k) = 2*binomial(n-floor((k+1)/2),floor(k/2)) - 1, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 1, 7, 5, 5, 1, 1, 1, 9, 7, 11, 5, 1, 1, 1, 11, 9, 19, 11, 7, 1, 1, 1, 13, 11, 29, 19, 19, 7, 1, 1, 1, 15, 13, 41, 29, 39, 19, 9, 1, 1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1, 1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1, 1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 3, 1;
1, 1, 5, 3, 1;
1, 1, 7, 5, 5, 1;
1, 1, 9, 7, 11, 5, 1;
1, 1, 11, 9, 19, 11, 7, 1;
1, 1, 13, 11, 29, 19, 19, 7, 1;
1, 1, 15, 13, 41, 29, 39, 19, 9, 1;
1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1;
1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1;
1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1;
...
-
[2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n], n in [0..14]]; // Bruno Berselli, May 03 2012
-
T := proc (n, k) options operator, arrow; 2*binomial(n-floor((1/2)*k+1/2), floor((1/2)*k))-1 end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form. - Emeric Deutsch, Jul 15 2007
-
Table[2*Binomial[n -Floor[(k+1)/2], Floor[k/2]] -1, {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
-
T(n,k) = 2*binomial(n- (k+1)\2, k\2) -1; \\ G. C. Greubel, Jul 10 2019
-
[[2*binomial(n -floor((k+1)/2), floor(k/2)) -1 for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 10 2019
A131270
Triangle T(n,k) = 2*A046854(n,k) - 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 5, 5, 7, 1, 1, 1, 5, 11, 7, 9, 1, 1, 1, 7, 11, 19, 9, 11, 1, 1, 1, 7, 19, 19, 29, 11, 13, 1, 1, 1, 9, 19, 39, 29, 41, 13, 15, 1, 1, 1, 9, 29, 39, 69, 41, 55, 15, 17, 1, 1, 1, 11, 29, 69, 69, 111, 55, 71, 17, 19, 1, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 3, 5, 1, 1;
1, 5, 5, 7, 1, 1;
1, 5, 11, 7, 9, 1, 1;
1, 7, 11, 19, 9, 11, 1, 1;
...
-
[[2*Binomial(Floor((n+k)/2), k) -1: k in [0..n]]:n in [0..12]]; // G. C. Greubel, Jul 09 2019
-
Table[2*Binomial[Floor[(n+k)/2], k] - 1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 09 2019 *)
-
T(n,k) = 2*binomial((n+k)\2, k)-1; \\ G. C. Greubel, Jul 09 2019
-
[[2*binomial(floor((n+k)/2), k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 09 2019
A210728
a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 7, 14, 27, 48, 83, 140, 233, 384, 629, 1026, 1669, 2710, 4395, 7122, 11535, 18676, 30231, 48928, 79181, 128132, 207337, 335494, 542857, 878378, 1421263, 2299670, 3720963, 6020664, 9741659, 15762356, 25504049, 41266440, 66770525, 108037002, 174807565
Offset: 0
Cf.
A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf.
A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf.
A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf.
A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf.
A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf.
A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf.
A210729: a(n)=a(n-1)+a(n-2)+n+3, a(0)=1,a(1)=2.
-
RecurrenceTable[{a[0] == 1, a[1] == 2, a[n] == a[n - 1] + a[n - 2] + n + 2}, a, {n, 36}] (* Bruno Berselli, Jun 27 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,a+b+n+3}; NestList[nxt,{1,1,2},40][[;;,2]] (* Harvey P. Dale, Aug 26 2024 *)
A210729
a(n) = a(n-1) + a(n-2) + n + 3 with n>1, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 8, 16, 31, 55, 95, 160, 266, 438, 717, 1169, 1901, 3086, 5004, 8108, 13131, 21259, 34411, 55692, 90126, 145842, 235993, 381861, 617881, 999770, 1617680, 2617480, 4235191, 6852703, 11087927, 17940664, 29028626, 46969326, 75997989, 122967353
Offset: 0
Cf.
A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf.
A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf.
A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf.
A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf.
A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf.
A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf.
A210728: a(n)=a(n-1)+a(n-2)+n+2, a(0)=1,a(1)=2.
-
F:=Fibonacci;; List([0..40], n-> 2*F(n+3)+3*F(n+1)-n-6); # G. C. Greubel, Jul 09 2019
-
[3*Fibonacci(n+1)+2*Fibonacci(n+3)-n-6: n in [0..40]]; // Vincenzo Librandi, Jul 18 2013
-
Table[3*Fibonacci[n+1]+2*Fibonacci[n+3]-n-6,{n,0,40}] (* Vaclav Kotesovec, May 13 2012 *)
-
vector(40, n, n--; f=fibonacci; 2*f(n+3)+3*f(n+1)-n-6) \\ G. C. Greubel, Jul 09 2019
-
prpr, prev = 1,2
for n in range(2, 99):
current = prev+prpr+n+3
print(prpr, end=',')
prpr = prev
prev = current
-
f=fibonacci; [2*f(n+3)+3*f(n+1)-n-6 for n in (0..40)] # G. C. Greubel, Jul 09 2019
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 10, 7, 10, 3, 1, 1, 4, 11, 14, 14, 11, 4, 1, 1, 4, 16, 15, 29, 15, 16, 4, 1, 1, 5, 17, 26, 35, 35, 26, 17, 5, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 5, 2, 1;
1, 3, 6, 6, 3, 1;
1, 3, 10, 7, 10, 3, 1;
1, 4, 11, 14, 14, 11, 4, 1;
1, 4, 16, 15, 29, 15, 16, 4, 1;
...
Showing 1-6 of 6 results.
Comments