A131323 Odd numbers whose binary expansion ends in an even number of 1's.
3, 11, 15, 19, 27, 35, 43, 47, 51, 59, 63, 67, 75, 79, 83, 91, 99, 107, 111, 115, 123, 131, 139, 143, 147, 155, 163, 171, 175, 179, 187, 191, 195, 203, 207, 211, 219, 227, 235, 239, 243, 251, 255, 259, 267, 271, 275, 283, 291, 299, 303, 307, 315, 319, 323, 331
Offset: 1
Examples
11 in binary is 1011, which ends with two 1's.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Thomas Zaslavsky, Anti-Fibonacci Numbers: A Formula, Sep 26 2016.
Programs
-
Maple
N:= 1000: # to get all terms up to N Odds:= [seq(2*i+1,i=0..floor((N-1)/2)]: f:= proc(n) local L,x; L:= convert(n,base,2); x:= ListTools:-Search(0,L); if x = 0 then type(nops(L),even) else type(x,odd) fi end proc: A131323:= select(f,Odds); # Robert Israel, Apr 02 2014
-
Mathematica
Select[Range[500], OddQ[ # ] && EvenQ[FactorInteger[ # + 1][[1, 2]]] &] (* Stefan Steinerberger, Dec 18 2007 *) en1Q[n_]:=Module[{ll=Last[Split[IntegerDigits[n,2]]]},Union[ll] =={1} &&EvenQ[Length[ll]]]; Select[Range[1,501,2],en1Q] (* Harvey P. Dale, May 18 2011 *)
-
PARI
is(n)=n%2 && valuation(n+1,2)%2==0 \\ Charles R Greathouse IV, Aug 20 2013
-
Python
from itertools import count, islice def A131323_gen(startvalue=3): # generator of terms >= startvalue return map(lambda n:(n<<1)+1,filter(lambda n:(~(n+1)&n).bit_length()&1,count(max(startvalue>>1,1)))) A131323_list = list(islice(A131323_gen(),30)) # Chai Wah Wu, Sep 11 2024
-
Python
def A131323(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, s = n+x, bin(x+1)[2:] l = len(s) for i in range(l&1,l,2): c -= int(s[i])+int('0'+s[:i],2) return c return bisection(f,n,n)<<1|1 # Chai Wah Wu, Jan 29 2025
Formula
a(n) = 2*A079523(n) + 1. - Michel Dekking, Feb 13 2019
Extensions
More terms from Stefan Steinerberger, Dec 18 2007
Comments