cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131370 a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3), a(0) = 3, a(1) = 2, a(2) = 0.

Original entry on oeis.org

3, 2, 0, 0, 4, 12, 24, 44, 84, 168, 340, 684, 1368, 2732, 5460, 10920, 21844, 43692, 87384, 174764, 349524, 699048, 1398100, 2796204, 5592408, 11184812, 22369620, 44739240, 89478484, 178956972, 357913944, 715827884, 1431655764, 2863311528
Offset: 0

Views

Author

Paul Curtz, Sep 30 2007

Keywords

Comments

Sequence is identical to its third differences. Binomial transform of 3, -1, -1, 3, -1, -1, 3, -1, -1, ... .

Crossrefs

Cf. A086953.

Programs

  • Maple
    seq((1/3)*2^n+8*cos((1/3)*n*Pi)*1/3,n=0..33); # Emeric Deutsch, Oct 15 2007
  • Mathematica
    a = {3, 2, 0}; Do[AppendTo[a, 3*a[[ -1]] - 3*a[[ -2]] + 2*a[[ -3]]], {60}]; a (* Stefan Steinerberger, Oct 04 2007 *)
    LinearRecurrence[{3,-3,2},{3,2,0},40] (* Harvey P. Dale, Apr 28 2025 *)

Formula

a(n) = 2^n/3 + (8/3)cos(n*Pi/3). - Emeric Deutsch, Oct 15 2007
G.f.: -(3-7*x+3*x^2)/(2*x-1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
a(n) = 2*A086953(n-1) for n>0. - Rick L. Shepherd, Aug 02 2017

Extensions

More terms from Stefan Steinerberger, Oct 04 2007