cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131380 a(3n) = 2n, a(3n+1) = 2n+2, a(3n+2) = 2n+1.

Original entry on oeis.org

0, 2, 1, 2, 4, 3, 4, 6, 5, 6, 8, 7, 8, 10, 9, 10, 12, 11, 12, 14, 13, 14, 16, 15, 16, 18, 17, 18, 20, 19, 20, 22, 21, 22, 24, 23, 24, 26, 25, 26, 28, 27, 28, 30, 29, 30, 32, 31, 32, 34, 33, 34, 36, 35, 36, 38, 37, 38, 40, 39, 40, 42, 41, 42, 44, 43, 44, 46, 45, 46, 48, 47, 48, 50
Offset: 0

Views

Author

Paul Curtz, Oct 01 2007

Keywords

Crossrefs

Programs

  • Magma
    [(-n mod 3) + 2*Floor(n/3) : n in [0..100]]; // Wesley Ivan Hurt, Aug 20 2014
    
  • Magma
    I:=[0,2,1,2]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Sep 27 2017
  • Maple
    A131380:=n->(-n mod 3) + 2*floor(n/3): seq(A131380(n), n=0..100); # Wesley Ivan Hurt, Aug 20 2014
  • Mathematica
    Table[Mod[-n, 3] + 2 Floor[n/3], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 20 2014 *)
    CoefficientList[Series[x*(2 - x + x^2)/((x - 1)^2 (1 + x + x^2)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Aug 20 2014 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 2, 1, 2}, 200] (* Vincenzo Librandi, Sep 27 2017 *)

Formula

G.f.: x*(2-x+x^2)/((x-1)^2*(1+x+x^2)); a(n) = a(n-1)+a(n-3)-a(n-4); a(n) = (-n mod 3) + 2*floor(n/3) = A080425(n) + 2*A002264(n). - Wesley Ivan Hurt, Aug 20 2014
E.g.f.: ((2*z+1)/3)*exp(z)+((5/9)*sqrt(3)*sin(sqrt(3)*z/2)-(1/3)*cos(sqrt(3)*z/2))*exp(-z/2). - Robert Israel, Aug 21 2014
a(n) = (6*n+3-6*cos(2*(n+4)*Pi/3)-4*sqrt(3)*sin(2*(n+4)*Pi/3))/9. - Wesley Ivan Hurt, Sep 26 2017