A258837
a(n) = 1 - n^2.
Original entry on oeis.org
1, 0, -3, -8, -15, -24, -35, -48, -63, -80, -99, -120, -143, -168, -195, -224, -255, -288, -323, -360, -399, -440, -483, -528, -575, -624, -675, -728, -783, -840, -899, -960, -1023, -1088, -1155, -1224, -1295, -1368, -1443, -1520, -1599, -1680, -1763, -1848
Offset: 0
Sequences of the type 1-n^k:
A024000 (k=1), this sequence (k=2),
A024001 (k=3),
A024002 (k=4),
A024003 (k=5),
A024004 (k=6),
A024005 (k=7),
A024006 (k=8),
A024007 (k=9),
A024008 (k=10),
A024009 (k=11),
A024010 (k=12).
-
[1-n^2: n in [0..50]];
-
I:=[1,0,-3]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
-
Table[1 - n^2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 0, -3}, 50]
-
my(x='x+O('x^50)); Vec((1-3*x)/(1-x)^3) \\ G. C. Greubel, May 11 2017
A297477
Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.
Original entry on oeis.org
0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0
The matrix for these characteristic polynomials starts:
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
}
----------------------------------------------------------------------
The table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 -1
2: -2 0 1
3: 3 3 -1 -1
4: -4 -8 -3 2 1
5; 5 15 14 2 -3 -1
6: -6 -24 -35 -20 0 4 1
7: 7 35 69 65 25 -3 -5 -1
8: -8 -48 -119 -154 -105 -28 7 6 1
9: 9 63 188 308 294 154 28 -12 -7 -1
10: -10 -80 -279 -552 -672 -504 -210 -24 18 8 1
... reformatted by _Wolfdieter Lang_, Feb 02 2018.
-
f:= proc(n) local M,P,lambda,k;
M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda);
seq(coeff(P,lambda,k),k=0..n)
end proc:
f(0):= 0:
for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
-
Clear[A, x, t];
Table[t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] :=
t[n, k] =
If[n < k,
If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
Flatten[%]
Showing 1-2 of 2 results.
Comments