cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A355565 T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

0, 1, 0, 2, -1, 0, 17, -4, 1, 0, 40, -49, 6, -1, 0, 401, -140, 97, -8, 1, 0, 1042, -1569, 336, -161, 10, -1, 0, 11073, -4376, 4321, -660, 241, -12, 1, 0, 29856, -48833, 13342, -9681, 1144, -337, 14, -1, 0, 325441, -136488, 160929, -33188, 18929, -1820, 449, -16, 1, 0
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

The recurrence given by Cserti (2000), page 5, (32) is used to calculate the resistance between two arbitrarily spaced nodes in an infinite square lattice whose edges are replaced by one-ohm resistors. The lower triangle, including the diagonal, in Table I of Atkinson and Steenwijk (1999), page 487, is reproduced. The solution to the resistor grid problem shown in the xkcd Web Comic #356 "Nerd Sniping", provided in A211074, is the special case (j,k) = (2,1).
Using the terms of A280079 and A280317 as pairs of grid indices leads to strictly increasing resistances, i.e., R(A280079(m),A280317(m)) > R(A280079(i),A280317(i)) for m > i. This implies that for grid points on the same radius the resistance increases with the circumferential angle between 0 and Pi/4. The further dependence of the resistance along the circumferential angle with a fixed radius results from symmetry. - Hugo Pfoertner, Aug 31 2022

Examples

			The triangle begins:
     0;
     1,     0;
     2,    -1,   0;
    17,    -4,   1,    0;
    40,   -49,   6,   -1,  0;
   401,  -140,  97,   -8,  1,  0;
  1042, -1569, 336, -161, 10, -1, 0
.
The combined triangles used to calculate the resistances are:
  \  k      0       |        1        |       2       |      3       |
   \    s/t     u/v |    s/t    u/v   |  s/t      u/v |  s/t    u/v  |
  j \---------------|-----------------|---------------|--------------|
  0 |   0       0   |     .      .    |   .        .  |   .      .   |
  1 |   1/2     0   |    0      1     |   .        .  |   .      .   |
  2 |   2      -2   |   -1/2    2     |  0        4/3 |   .      .   |
  3 |  17/2   -12   |   -4     23/3   |  1/2      2/3 |  0     23/15 |
  4 |  40    -184/3 | - 49/2   40     |  6    -118/15 | -1/2   12/5  |
  5 | 401/2  -940/3 | -140    3323/15 | 97/2 -1118/15 | -8    499/35 |
.
continued:
  \ k     4       |      5       |
   \  s/t   u/v   | s/t    u/v   |
  j \-------------|--------------|
  0 |  .     .    |  .      .    |
  1 |  .     .    |  .      .    |
  2 |  .     .    |  .      .    |
  3 |  .     .    |  .      .    |
  4 | 0   176/105 |  .      .    |
  5 | 1/2  20/21  | 0    563/315 |
.
E.g., the resistance for a node distance vector (4,1) is R = T(4,1)/A131406(5,2) + (2/Pi)*A355566(4,1)/A355567(4,1) = -49/2 + (2/Pi)*40/1 = 80/Pi - 49/2.
		

References

  • See A211074 for more references and links.

Crossrefs

A131406 are the corresponding denominators t, with indices shifted by 1.
A355566 and A355567 are u and v.
Cf. A355585, A355586, A355587, A355588 (same problem for the infinite triangular lattice).

Programs

  • Maple
    See link.
  • Mathematica
    alphas[beta_] :=
    Log[2 - Cos[beta] + Sqrt[3 + Cos[beta]*(Cos[beta] - 4)]];
    Rsqu[n_, p_] :=
    Simplify[(1/Pi)*
       Integrate[(1 - Exp[-Abs[n]*alphas[beta]]*Cos[p*beta])/
         Sinh[alphas[beta]], {beta, 0, Pi}]];
    Table[Rsqu[n, k], {n, 0, 4}, {k, 0, n}] // TableForm (* Hugo Pfoertner, Aug 21 2022, calculates R, after Atkinson and Steenwijk *)
  • PARI
    R(m,p,x=pi) = {if (m==0 && p==0, return(0)); if (m==1 && p==0, return(1/2)); if (m==1 && p==1, return(2/x)); if(m==p, my(mm=m-1); return(R(mm,mm)*4*mm/(2*mm+1) - R(mm-1,mm-1)*(2*mm-1)/(2*mm+1))); if (p==(m-1), my(mm=m-1); return(2*R(mm,mm) - R(mm,mm-1))); if (p==0, my(mm=m-1); return(4*R(mm,0) - R(mm-1,0) - 2*R(mm,1))); if (p0, my(mm=m-1); return(4*R(mm,p) - R(mm-1,p) - R(mm,p+1) - R(mm,p-1)))};
    for(j=0,9,for(k=0,j,my(q=pi*R(j,k,pi));print1(numerator(polcoef(q,1,pi)),", "));print())

Formula

The resistance for the distance vector (j,k) is R(j,k) = T(j,k)/(1+mod(j+k,2)) +(2/Pi)*A355566(j,k)/A355567(j,k), avoiding the use of A131406.
From Rainer Rosenthal, Aug 04 2022: (Start)
R(0,0) = 0; R(1,0) = 1/2.
R(n,n) = R(n-1,n-1) + (2/Pi)/(2*n-1) for n >= 1.
R(j,k) = R(k,j) and R(-j,k) = R(j,k).
4*R(j,k) = R(j-1,k) + R(j+1,k) + R(j,k-1) + R(j,k+1) for (j,k) != (0,0).
(End)
T(j+1,0) = A089165(j)/(1 + mod(j,2)) for j >= 0. - Hugo Pfoertner, Aug 21 2022

A355566 T(j,k) are the numerators u in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

0, 0, 1, -2, 2, 4, -12, 23, 2, 23, -184, 40, -118, 12, 176, -940, 3323, -1118, 499, 20, 563, -24526, 1234, -18412, 13462, -626, 118, 6508, -130424, 721937, -71230, 327143, -1312, 14369, 262, 88069, -4924064, 191776, -6601046, 2395676, -888568, 131972, -300766, 1624, 91072
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

See A355565 for more information.
On the diagonal we have T(0,0) = 0 and T(n,n) = A350669(n-1) for n > 0. - Rainer Rosenthal, Aug 01 2022

Examples

			The triangle begins:
       0;
       0,    1;
      -2,    2,      4;
     -12,   23,      2,    23;
    -184,   40,   -118,    12,  176;
    -940, 3323,  -1118,   499,   20, 563;
  -24526, 1234, -18412, 13462, -626, 118, 6508;
		

References

  • See A211074 for references and links.

Crossrefs

A355567 are the corresponding denominators v.
A355565 and A131406 (with changed offset) are s and t.
Cf. A350669.

Programs

  • PARI
    \\ uses function R(m, p, x) given in A355565
    for (j=0, 8, for (k=0, j, my(q=(pi/2)*R(j,k)); print1(numerator(polcoef(q,0,pi)),", ")); print())

A355567 T(j,k) are the denominators v in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 3, 15, 3, 1, 15, 5, 105, 3, 15, 15, 35, 21, 315, 15, 1, 35, 105, 45, 45, 3465, 15, 105, 21, 315, 7, 693, 231, 45045, 105, 5, 315, 315, 495, 495, 15015, 585, 45045, 7, 315, 45, 3465, 3465, 45045, 45045, 15015, 385, 765765, 315, 35, 3465, 495, 45045, 6435, 15015, 45045, 765765, 9945, 14549535
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

See A355565 for more information.
On the diagonal we have T(0,0) = 1 and T(n,n) = A350670(n-1) for n > 0. - Rainer Rosenthal, Aug 01 2022

Examples

			The triangle begins:
   1;
   1,  1;
   1,  1,  3;
   1,  3,  3,  15;
   3,  1, 15,   5, 105;
   3, 15, 15,  35,  21, 315;
  15,  1, 35, 105,  45,  45, 3465
		

References

  • See A211074 for references and links.

Crossrefs

A355566 are the corresponding numerators u.
A355565 and A131406 (with changed offset) are s and t.
Cf. A350670.

Programs

  • PARI
    \\ uses function R(m, p, x) given in A355565
    for (j=0, 8, for (k=0, j, my(q=(pi/2)*R(j, k)); print1(denominator(polcoef(q, 0, pi)), ", ")); print())
Showing 1-3 of 3 results.