A355585 T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.
0, 1, 8, -2, 27, -5, 928, -70, 16, 11249, -2671, 123, 46872, -34354, 5992, -438, 1792225, -445535, 28075, -10303, 23152256, -5824226, 1168304, -178754, 38336, 100685835, -25547957, 5343755, -885717, 101355, 3970817992, -338056246, 72962904, -12914726, 1825464, -386166
Offset: 0
Examples
The triangle begins: 0; 1; 8, -2; 27, -5; 928, -70, 16; 11249, -2671, 123; 46872, -34354, 5992, -438; 1792225, -445535, 28075, -10303; 23152256, -5824226, 1168304, -178754, 38336; 100685835, -25547957, 5343755, -885717, 101355; . The combined triangles used to calculate the resistances are: \ j 0 | 1 | k\---------- s/t ----------- u/v -|----------- s/t ----------- u/v -| 0| 0/1 0/ 1 | . . | 1| 1/3 0/ 1 | . . | 2| 8/3 -2/ 1 | -2/3 1/ 1 | 3| 27/1 -24/ 1 | -5/1 5/ 1 | 4| 928/3 -280/ 1 | -70/1 64/ 1 | 5| 11249/3 -3400/ 1 | -2671/3 808/ 1 | 6| 46872/1 -212538/ 5 | -34354/3 51929/ 5 | 7| 1792225/3 -2708944/ 5 | -445535/3 673429/ 5 | 8| 23152256/3 -244962336/35 | -5824226/3 61623224/35 | 9| 100685835/1 -3195918288/35 | -25547957/1 810930216/35 | 10| 3970817992/3 -42013225014/35 | -338056246/1 2146081719/ 7 | 11| 52514317745/3 -111125508824/ 7 | -13481564911/3 142641647567/35 | . continued \ j 2 | 3 | k\-------- s/t ---------- u/v -|--------- s/t -------- u/v -| 4| 16/1 -14/ 1 | . . | 5| 123/1 -111/ 1 | . . | 6| 5992/3 -9054/ 5 | -438/1 1989/5 | 7| 28075/1 -127303/ 5 | -10303/3 15576/5 | 8| 1168304/3 -12361214/35 | -178754/3 1891328/35 | 9| 5343755/1 -169618717/35 | -885717/1 28113999/35 | 10| 72962904/1 -2315951182/35 | -12914726/1 81986531/ 7 | 11| 993810715/1 -31545031729/35 | -184858117/1 5867671888/35 | . continued \ j 4 | 5 | k\------- s/t -------- u/v -|------- s/t ------- u/v -| 8| 38336/3 -405592/35 | . . | 9| 101355/1 -3217136/35 | . . | 10| 1825464/1 -57942922/35 | -386166/1 12257507/35 | 11| 28123355/1 -892677136/35 | -3085317/1 97932579/35 | . Using the terms for (j,k) = (10,5) with {s, t, u, v} = {-386166, 1, 12257507, 35} the resistance is R = T(10,5)/A355586(10,5) + (2*sqrt(3)/Pi) * A355587(10,5)/A355588(10,5) = -386166/1 + (2*sqrt(3)/Pi)*12257507/35 = 0.731139136228538824636... . This equals the integral for the resistance distance R(j,k) after substitution of j=10 and k=5.
References
- See A211074 for more references and links (with alternatives).
Links
- D. Atkinson and F. J. van Steenwijk, Infinite resistive lattices, Am. J. Phys. 67 (1999), 486-492.
- R. J. Mathar, Recurrence for the Atkinson-Steenwijk Integrals for Resistors in the Infinite Triangular Lattice, viXra:2208.0111 (2022).
- Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
Crossrefs
Programs
-
PARI
Rtri(n,p)={my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi}; searchr (target, maxn=1000000, maxd=10, maxrat=1000, minn=0, mind=1) = {my (Rcons=2*sqrt(3)/Pi, delta=oo); for (d=mind, maxd, my(PP=Rcons/d); for (nn=minn, maxn, foreach ([-nn,nn], n, my (P=PP*n, T=target-P, Q = bestappr(T,maxrat), D=abs(target-P-Q)); if(D
-
PARI
\\ Alternative method using a recurrence; calculates triangle of s/t jk(j,k) = {my(jj=j,kk=k); if(k<1,jj=j-k+1;kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]}; D(n) = subst(pollegendre(n), 'x, 7); ST(nend) = {my(nmax=nend+1, N=matrix(nmax,(nmax+1)\2)); for (n=2, nmax, N[n,1]=(1/3) * sum(k=0,n-2,D(k))); for (n=3, nmax, N[n,2] = (1/2)*(6*N[n-1,1] - 2*N[jk(n-1,2)[1],jk(n-1,2)[2]] - N[n-2,1] - N[n,1])); for (n=5, nmax, for (m=3, (n+1)\2, N[n,m] = 6*N[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - N[jk(n-1,m)[1],jk(n-1,m)[2]] - N[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - N[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - N[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - N[jk(n,m-1)[1],jk(n,m-1)[2]] )); N}; ST(11)
Comments