A356202
a(n) is the second component y of the distance vector (x,y), x >= y >= 0, between two nodes of an infinite square lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. x is A356201(n).
Original entry on oeis.org
0, 2, 8, 606, 24881, 903855, 18345919, 303176603, 7423167971, 247828120179, 6034957650107, 7948827377158
Offset: 0
-
\\ using the function Rsqlatt(R) from program file linked in A356201
for (k=0, 11, print1(Rsqlatt(k)[2], ", ")) \\ Hugo Pfoertner, Sep 09 2022
A355565
T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.
Original entry on oeis.org
0, 1, 0, 2, -1, 0, 17, -4, 1, 0, 40, -49, 6, -1, 0, 401, -140, 97, -8, 1, 0, 1042, -1569, 336, -161, 10, -1, 0, 11073, -4376, 4321, -660, 241, -12, 1, 0, 29856, -48833, 13342, -9681, 1144, -337, 14, -1, 0, 325441, -136488, 160929, -33188, 18929, -1820, 449, -16, 1, 0
Offset: 0
The triangle begins:
0;
1, 0;
2, -1, 0;
17, -4, 1, 0;
40, -49, 6, -1, 0;
401, -140, 97, -8, 1, 0;
1042, -1569, 336, -161, 10, -1, 0
.
The combined triangles used to calculate the resistances are:
\ k 0 | 1 | 2 | 3 |
\ s/t u/v | s/t u/v | s/t u/v | s/t u/v |
j \---------------|-----------------|---------------|--------------|
0 | 0 0 | . . | . . | . . |
1 | 1/2 0 | 0 1 | . . | . . |
2 | 2 -2 | -1/2 2 | 0 4/3 | . . |
3 | 17/2 -12 | -4 23/3 | 1/2 2/3 | 0 23/15 |
4 | 40 -184/3 | - 49/2 40 | 6 -118/15 | -1/2 12/5 |
5 | 401/2 -940/3 | -140 3323/15 | 97/2 -1118/15 | -8 499/35 |
.
continued:
\ k 4 | 5 |
\ s/t u/v | s/t u/v |
j \-------------|--------------|
0 | . . | . . |
1 | . . | . . |
2 | . . | . . |
3 | . . | . . |
4 | 0 176/105 | . . |
5 | 1/2 20/21 | 0 563/315 |
.
E.g., the resistance for a node distance vector (4,1) is R = T(4,1)/A131406(5,2) + (2/Pi)*A355566(4,1)/A355567(4,1) = -49/2 + (2/Pi)*40/1 = 80/Pi - 49/2.
- See A211074 for more references and links.
- Rainer Rosenthal, Table of n, a(n) for n = 0..135, rows 0..15 of triangle, flattened.
- J. Cserti, Application of the lattice Green's function for calculating the resistance of infinite networks of resistors, arXiv:cond-mat/9909120 [cond-mat.mes-hall], 1999-2000.
- Hugo Pfoertner, Grid points sorted by increasing R values, (2022).
- Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
- Physics Stack Exchange, On this infinite grid of resistors, what's the equivalent resistance? Answer by user PBS, Apr 21 2018.
- Rainer Rosenthal, Maple program
A131406 are the corresponding denominators t, with indices shifted by 1.
-
See link.
-
alphas[beta_] :=
Log[2 - Cos[beta] + Sqrt[3 + Cos[beta]*(Cos[beta] - 4)]];
Rsqu[n_, p_] :=
Simplify[(1/Pi)*
Integrate[(1 - Exp[-Abs[n]*alphas[beta]]*Cos[p*beta])/
Sinh[alphas[beta]], {beta, 0, Pi}]];
Table[Rsqu[n, k], {n, 0, 4}, {k, 0, n}] // TableForm (* Hugo Pfoertner, Aug 21 2022, calculates R, after Atkinson and Steenwijk *)
-
R(m,p,x=pi) = {if (m==0 && p==0, return(0)); if (m==1 && p==0, return(1/2)); if (m==1 && p==1, return(2/x)); if(m==p, my(mm=m-1); return(R(mm,mm)*4*mm/(2*mm+1) - R(mm-1,mm-1)*(2*mm-1)/(2*mm+1))); if (p==(m-1), my(mm=m-1); return(2*R(mm,mm) - R(mm,mm-1))); if (p==0, my(mm=m-1); return(4*R(mm,0) - R(mm-1,0) - 2*R(mm,1))); if (p0, my(mm=m-1); return(4*R(mm,p) - R(mm-1,p) - R(mm,p+1) - R(mm,p-1)))};
for(j=0,9,for(k=0,j,my(q=pi*R(j,k,pi));print1(numerator(polcoef(q,1,pi)),", "));print())
A356203
a(n) is the first component x of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. y is A356204(n).
Original entry on oeis.org
0, 43, 9615, 2299822, 507491696, 118805048562, 25315296119626, 5959615271620724
Offset: 0
n x y R(x,y) - n
0 0 0 0
1 43 18 5.033*10^(-6)
2 9615 2536 1.848*10^(-10)
3 2299822 1136101 -3.120*10^(-14)
4 507491696 119227930 5.751*10^(-19)
5 118805048562 33636581266 5.618*10^(-23)
6 25315296119626 1774960492720 8.406*10^(-29)
7 5959615271620724 685318499093455 2.526*10^(-32)
A356204
a(n) is the second component y of the distance vector (x,y) in an oblique 120-degree coordinate system, 0 <= y <= x, between two nodes of an infinite triangular lattice of one-ohm resistors, such that the resistance R between the two nodes is as close as possible to n ohms, i.e., abs(R - n) is minimized. x is A356203(n).
Original entry on oeis.org
0, 18, 2536, 1136101, 119227930, 33636581266, 1774960492720, 685318499093455
Offset: 0
Showing 1-4 of 4 results.
Comments