cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005981 Number of 2 up, 2 down, 2 up, ... permutations of length 2n + 1.

Original entry on oeis.org

1, 1, 6, 71, 1456, 45541, 2020656, 120686411, 9336345856, 908138776681, 108480272749056, 15611712012050351, 2664103110372192256, 531909061958526321421, 122840808510269863827456, 32491881630252866646683891, 9758611490955498257378246656
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, personal communication.

Crossrefs

Bisection of A058258.

Programs

  • Maple
    g:=((cosh(x)-1)*sin(x)+(cos(x)+1)*sinh(x))/(cos(x)*cosh(x)+1): series(%,x,35):
    seq(n!*coeff(%,x,n),n=1..34,2); # Peter Luschny, Feb 07 2017
  • Mathematica
    egf = ((Cosh[x]-1)*Sin[x]+(Cos[x]+1)*Sinh[x])/(Cos[x]*Cosh[x]+1); a[n_] := SeriesCoefficient[egf, {x, 0, 2*n+1}]*(2*n+1)!; Array[a, 17, 0] (* Jean-François Alcover, Mar 13 2014 *)

Formula

E.g.f.: x + Sum_{n>=1} a(n)*(x^(2n+1))/(2n+1)! = (f(0,x)*f(1,x) -f(2,x)*f(3,x)+ f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k>=0} (x^(4k+j))/(4k+j)!, j = 0,1,2,3, is the j-th generalized hyperbolic function. - Peter Bala, Jul 13 2007
Basset (2013) gives an e.g.f. involving trigonometric and hyperbolic functions. - N. J. A. Sloane, Dec 24 2013
a(n) ~ 4 * (2*n+1)! / (tan(r/2)^2 * r^(2*n+2)), where r = A076417 = 1.8751040687119611664453082410782141625701117335310699882454137131... is the root of the equation cos(r)*cosh(r) = -1. - Vaclav Kotesovec, Feb 01 2015

A131453 2 up, 2 down, ..., 2 up, 2 down permutations of length 4n+1.

Original entry on oeis.org

1, 6, 1456, 2020656, 9336345856, 108480272749056, 2664103110372192256, 122840808510269863827456, 9758611490955498257378246656, 1251231616578606273788469919481856, 245996119743058288132230759497577005056, 71155698830255977656506481145458378597728256
Offset: 0

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

Bisection of A005981.

Examples

			a(1) = 6. The six 2 up, 2 down permutations on 5 letters are (12543), (13542), (14532), (23541), (24532) and (34521).
		

Crossrefs

Programs

  • Maple
    g:= (tan(x)+exp(2*x)*(tan(x)+1)-1)/(exp(2*x)+2*exp(x)*sec(x)+1): series(%,x,46):
    seq(n!*coeff(%,x,n), n=1..45,4); # Peter Luschny, Feb 07 2017
  • Mathematica
    Table[(CoefficientList[Series[((-1 + E^(2*x))*Cos[x] + (1 + E^(2*x))*Sin[x]) / (2*E^x + (1 + E^(2*x))* Cos[x]), {x, 0, 80}], x] * Range[0, 77]!)[[n]], {n, 2, 78, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)

Formula

E.g.f.: Sum_{n>=0} a(n)*(x^(4n+1))/(4n+1)! = (sin(x)*(exp(2x)+1)+cos(x)*(exp(2x)-1))/(2*exp(x)+cos(x)*(exp(2x)+1)).

A131454 2 up, 2 down, ..., 2 up, 2 down, 2 up permutations of length 4n+3.

Original entry on oeis.org

1, 71, 45541, 120686411, 908138776681, 15611712012050351, 531909061958526321421, 32491881630252866646683891, 3302814916156503291298772711761, 527393971346575736206847604137659031, 126355819963625435928020023737689391659701
Offset: 0

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

Bisection of A005981. The entries listed above suggest various congruences for a(n): a(n) = 1 (mod 10), a(n) = 1 + 70*n (mod 100), a(n) = 1 + 70*n + 200*n(n-1) (mod 1000). Are these congruences true for all n? For an arbitrary integer m, the sequence a(n) taken modulo m may eventually become periodic. Compare with A081727.

Examples

			(1 4 5 3 2 6 7) is a 2 up, 2 down, 2 up permutation - one of the seventy-one permutations of this type in the symmetric group on 7 letters.
		

Crossrefs

Programs

  • Maple
    g:=(sinh(x)-sin(x))/(cos(x)*cosh(x)+1): series(%,x,44):
    seq(n!*coeff(%,x,n),n=3..45,4); # Peter Luschny, Feb 07 2017
  • Mathematica
    Table[(CoefficientList[Series[(-Sin[x] + Sinh[x]) / (1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 59]!)[[n]], {n, 4, 60, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)

Formula

E.g.f.: Sum_{n>=0} a(n)*(x^(4n+3))/(4n+3)! = (exp(2x)-2*sin(x)*exp(x)-1)/(2*exp(x)+cos(x)*(exp(2x)+1)). It appears that a(n) = (4n+3)!*coefficient of x^(4n+3) in the Taylor expansion of -4/(2*exp(x)+cos(x)*(exp(2x)+1)).
Showing 1-3 of 3 results.