cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A076417 Decimal expansion of first solution of equation cos(x)*cosh(x) = -1.

Original entry on oeis.org

1, 8, 7, 5, 1, 0, 4, 0, 6, 8, 7, 1, 1, 9, 6, 1, 1, 6, 6, 4, 4, 5, 3, 0, 8, 2, 4, 1, 0, 7, 8, 2, 1, 4, 1, 6, 2, 5, 7, 0, 1, 1, 1, 7, 3, 3, 5, 3, 1, 0, 6, 9, 9, 8, 8, 2, 4, 5, 4, 1, 3, 7, 1, 3, 1, 0, 5, 6, 7, 9, 9, 5, 2, 8, 4, 0, 4, 2, 8, 6, 3, 8, 5, 2, 6, 5, 6, 6, 5, 5, 0, 5, 8, 1, 8, 8, 6, 0, 3, 7, 0, 8, 4, 1, 0
Offset: 1

Views

Author

Zak Seidov, Oct 10 2002

Keywords

Comments

This is an equation related to a cantilever beam: cos(x)*cosh(x) = -1. The first three solutions are: 1.875 (this sequence), 4.69409 (A076418) and 7.854757 (A076419).

Examples

			1.87510406871196116644530824107821416257011173353...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Cos[x]Cosh[x]==-1,{x,1.8}, WorkingPrecision->120], 10,120][[1]] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    solve(x=1, 2, cos(x)*cosh(x) + 1) \\ Michel Marcus, Sep 11 2019

A058258 The 2-Up sequence: formed from final entries in rows of A058257.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 26, 71, 413, 1456, 10576, 45541, 397023, 2020656, 20551376, 120686411, 1402815833, 9336345856, 122087570176, 908138776681, 13194844482843, 108480272749056, 1733786041150976, 15611712012050351, 272197308765744053, 2664103110372192256
Offset: 0

Views

Author

N. J. A. Sloane, Dec 06 2000

Keywords

Crossrefs

Column k=2 of A229892.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=2,
           b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 2, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ;a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
    CoefficientList[Series[1 + ((Sin[x]-Cos[x]+1) * (Cosh[x]-1) + (Sin[x]+Cos[x]+1) * Sinh[x]) / ((1+Cosh[x]*Cos[x])),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

E.g.f. (J. M. Luck, 2013): 1 + ((sin(x) - cos(x) + 1) * (cosh(x)-1) + (sin(x) + cos(x) + 1) * sinh(x)) / ((1 + cosh(x)*cos(x))). - Vaclav Kotesovec, Sep 06 2014
a(n) ~ c * n! / r^n, where r = A076417 = 1.8751040687119611664453... is the root of the equation cosh(r)*cos(r) = -1, and c = 4*cot(r/2)/r = 1.56598351207925... if n is even, c = 4*cot(r/2)^2/r = 1.14958147083780... if n is odd. - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000

A131453 2 up, 2 down, ..., 2 up, 2 down permutations of length 4n+1.

Original entry on oeis.org

1, 6, 1456, 2020656, 9336345856, 108480272749056, 2664103110372192256, 122840808510269863827456, 9758611490955498257378246656, 1251231616578606273788469919481856, 245996119743058288132230759497577005056, 71155698830255977656506481145458378597728256
Offset: 0

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

Bisection of A005981.

Examples

			a(1) = 6. The six 2 up, 2 down permutations on 5 letters are (12543), (13542), (14532), (23541), (24532) and (34521).
		

Crossrefs

Programs

  • Maple
    g:= (tan(x)+exp(2*x)*(tan(x)+1)-1)/(exp(2*x)+2*exp(x)*sec(x)+1): series(%,x,46):
    seq(n!*coeff(%,x,n), n=1..45,4); # Peter Luschny, Feb 07 2017
  • Mathematica
    Table[(CoefficientList[Series[((-1 + E^(2*x))*Cos[x] + (1 + E^(2*x))*Sin[x]) / (2*E^x + (1 + E^(2*x))* Cos[x]), {x, 0, 80}], x] * Range[0, 77]!)[[n]], {n, 2, 78, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)

Formula

E.g.f.: Sum_{n>=0} a(n)*(x^(4n+1))/(4n+1)! = (sin(x)*(exp(2x)+1)+cos(x)*(exp(2x)-1))/(2*exp(x)+cos(x)*(exp(2x)+1)).

A131454 2 up, 2 down, ..., 2 up, 2 down, 2 up permutations of length 4n+3.

Original entry on oeis.org

1, 71, 45541, 120686411, 908138776681, 15611712012050351, 531909061958526321421, 32491881630252866646683891, 3302814916156503291298772711761, 527393971346575736206847604137659031, 126355819963625435928020023737689391659701
Offset: 0

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

Bisection of A005981. The entries listed above suggest various congruences for a(n): a(n) = 1 (mod 10), a(n) = 1 + 70*n (mod 100), a(n) = 1 + 70*n + 200*n(n-1) (mod 1000). Are these congruences true for all n? For an arbitrary integer m, the sequence a(n) taken modulo m may eventually become periodic. Compare with A081727.

Examples

			(1 4 5 3 2 6 7) is a 2 up, 2 down, 2 up permutation - one of the seventy-one permutations of this type in the symmetric group on 7 letters.
		

Crossrefs

Programs

  • Maple
    g:=(sinh(x)-sin(x))/(cos(x)*cosh(x)+1): series(%,x,44):
    seq(n!*coeff(%,x,n),n=3..45,4); # Peter Luschny, Feb 07 2017
  • Mathematica
    Table[(CoefficientList[Series[(-Sin[x] + Sinh[x]) / (1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 59]!)[[n]], {n, 4, 60, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)

Formula

E.g.f.: Sum_{n>=0} a(n)*(x^(4n+3))/(4n+3)! = (exp(2x)-2*sin(x)*exp(x)-1)/(2*exp(x)+cos(x)*(exp(2x)+1)). It appears that a(n) = (4n+3)!*coefficient of x^(4n+3) in the Taylor expansion of -4/(2*exp(x)+cos(x)*(exp(2x)+1)).

A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.

Original entry on oeis.org

1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
Offset: 1

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.
a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.

Examples

			From _Petros Hadjicostas_, Jul 25 2020: (Start)
For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
         3
        /
       2
      /
     1
For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
        5          5          5          5          5          5
       / \        / \        / \        / \        / \        / \
      3   4      4   3      2   4      3   4      4   3      4   2
     /     \    /     \    /     \    /     \    /     \    /     \
    1       2  1       2  1       3  2       1  2       1  3       1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
         `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> n*b(0, 2*n-1, 0):
    seq(a(n), n=1..19);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
         b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
    a[n_] := n*b[0, 2*n - 1, 0];
    Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
  • PARI
    f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
    g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));
    lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ Petros Hadjicostas, Jul 25 2020

Formula

E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.

Extensions

More terms from Petros Hadjicostas, Jul 25 2020

A005983 Number of 4 up, 4 down, 4 up, ... permutations of length 4n+1.

Original entry on oeis.org

1, 1, 70, 26599, 33757360, 107709888805, 726401013530416, 9197888739246870571, 200656681438694771057920, 7065183006232334215872360169, 381446884048286939903298793116160, 30299510478473850351087119774475282895, 3422529682416045761005260546463028151218176
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, personal communication.

Crossrefs

Cf. A229885.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=4,
          b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, 4*n+1, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 06 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 4, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ; a[n_] := b[0, 4*n+1, 0]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Extensions

Typo in name fixed by Alois P. Heinz, Oct 06 2013

A005982 3 up, 3 down, 3 up, ... permutations of length 3n+1.

Original entry on oeis.org

1, 20, 1301, 202840, 61889101, 32676403052, 27418828825961, 34361404413755056, 61335081309931829401, 150221740688275657957940, 489799709605132718770274141, 2073641570051429601078643837960, 11163099186064084100687107863253381
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, personal communication.

Crossrefs

Cf. A229884.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=3,
           b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, 3*n+1, 0):
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 06 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 3, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ; a[n_] := b[0, 3*n+1, 0]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Extensions

Typo in name fixed by Alois P. Heinz, Oct 06 2013

A259452 Number of 5 up, 5 down, 5 up, ... permutations of length 5n+1.

Original entry on oeis.org

1, 1, 252, 578005, 6190034016, 214265281290061, 19157603395806362772, 3800502511986185228829385, 1498722661993096106927612109936, 1081056808393919319749313795137642521, 1336319624105519211256870506149168604698792
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2015

Keywords

References

  • P. R. Stein, personal communication.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(
           t=5, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, 5*n+1, 0):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 02 2015
  • Mathematica
    k = 5; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == k, b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]]; Array[b[0, k # + 1, 0] &, 10] (* Michael De Vlieger, Oct 15 2017, after Jean-François Alcover at A005983 *)

Extensions

More terms from Alois P. Heinz, Jul 02 2015
Showing 1-8 of 8 results.