cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005981 Number of 2 up, 2 down, 2 up, ... permutations of length 2n + 1.

Original entry on oeis.org

1, 1, 6, 71, 1456, 45541, 2020656, 120686411, 9336345856, 908138776681, 108480272749056, 15611712012050351, 2664103110372192256, 531909061958526321421, 122840808510269863827456, 32491881630252866646683891, 9758611490955498257378246656
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, personal communication.

Crossrefs

Bisection of A058258.

Programs

  • Maple
    g:=((cosh(x)-1)*sin(x)+(cos(x)+1)*sinh(x))/(cos(x)*cosh(x)+1): series(%,x,35):
    seq(n!*coeff(%,x,n),n=1..34,2); # Peter Luschny, Feb 07 2017
  • Mathematica
    egf = ((Cosh[x]-1)*Sin[x]+(Cos[x]+1)*Sinh[x])/(Cos[x]*Cosh[x]+1); a[n_] := SeriesCoefficient[egf, {x, 0, 2*n+1}]*(2*n+1)!; Array[a, 17, 0] (* Jean-François Alcover, Mar 13 2014 *)

Formula

E.g.f.: x + Sum_{n>=1} a(n)*(x^(2n+1))/(2n+1)! = (f(0,x)*f(1,x) -f(2,x)*f(3,x)+ f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k>=0} (x^(4k+j))/(4k+j)!, j = 0,1,2,3, is the j-th generalized hyperbolic function. - Peter Bala, Jul 13 2007
Basset (2013) gives an e.g.f. involving trigonometric and hyperbolic functions. - N. J. A. Sloane, Dec 24 2013
a(n) ~ 4 * (2*n+1)! / (tan(r/2)^2 * r^(2*n+2)), where r = A076417 = 1.8751040687119611664453082410782141625701117335310699882454137131... is the root of the equation cos(r)*cosh(r) = -1. - Vaclav Kotesovec, Feb 01 2015

A058258 The 2-Up sequence: formed from final entries in rows of A058257.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 26, 71, 413, 1456, 10576, 45541, 397023, 2020656, 20551376, 120686411, 1402815833, 9336345856, 122087570176, 908138776681, 13194844482843, 108480272749056, 1733786041150976, 15611712012050351, 272197308765744053, 2664103110372192256
Offset: 0

Views

Author

N. J. A. Sloane, Dec 06 2000

Keywords

Crossrefs

Column k=2 of A229892.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(`if`(t=2,
           b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> b(0, n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 02 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[If[t == 2, b[o-j, u+j-1, 1], b[u+j-1, o-j, t+1]], {j, 1, o}]] ;a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 03 2014, after Alois P. Heinz *)
    CoefficientList[Series[1 + ((Sin[x]-Cos[x]+1) * (Cosh[x]-1) + (Sin[x]+Cos[x]+1) * Sinh[x]) / ((1+Cosh[x]*Cos[x])),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

E.g.f. (J. M. Luck, 2013): 1 + ((sin(x) - cos(x) + 1) * (cosh(x)-1) + (sin(x) + cos(x) + 1) * sinh(x)) / ((1 + cosh(x)*cos(x))). - Vaclav Kotesovec, Sep 06 2014
a(n) ~ c * n! / r^n, where r = A076417 = 1.8751040687119611664453... is the root of the equation cosh(r)*cos(r) = -1, and c = 4*cot(r/2)/r = 1.56598351207925... if n is even, c = 4*cot(r/2)^2/r = 1.14958147083780... if n is odd. - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Dec 12 2000

A008775 Expansion of e.g.f. 2/(1 + cos x * cosh x) in powers of x^4.

Original entry on oeis.org

1, 2, 272, 261392, 923578112, 8687146706432, 179207715900772352, 7123449535546491471872, 497301503279765920504020992, 56869795869126246818618490355712, 10089974849557868979545831504092332032, 2659150134955694814127423122143061660925952
Offset: 0

Views

Author

Keywords

References

  • Goulden and Jackson, Combin. Enum., Wiley, 1983 p. 287.

Crossrefs

Programs

  • Magma
    m:=70; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 2/(1+Cos(x)*Cosh(x)) )); [Factorial(4*n-4)*b[4*n-3]: n in [1..Floor(m/4)]]; // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(factorial(4*n)*coeff(series(2/(1+cos(x)*cosh(x)), x, 4*n+1), x, 4*n), n = 0..15); # G. C. Greubel, Sep 11 2019
  • Mathematica
    Table[(CoefficientList[Series[2/(1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 60]! )[[n]], {n, 1, 61, 4}] (* Vaclav Kotesovec, Sep 15 2014 *)
  • PARI
    my(x='x+O('x^60)); v=Vec(serlaplace(2/(1+cos(x)*cosh(x)) )); vector(#v\4, n, v[4*n-3]) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [factorial(4*n)*( 2/(1+cos(x)*cosh(x)) ).series(x,4*n+2).list()[4*n] for n in (0..30)]; # G. C. Greubel, Sep 11 2019

Formula

a(n) ~ 8 * (4*n)! / ((cosh(r)*sin(r) - cos(r)*sinh(r)) * r^(4*n+1)), where r = 1.875104068711961166445308241... is the root of the equation cosh(r)*cos(r) = -1. See A076417. - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A009398 Expansion of log(1+tanh(x)*tan(x)).

Original entry on oeis.org

0, 2, -12, 352, -16352, 1382912, -172372992, 30716649472, -7334631698432, 2270814362796032, -883463096359452672, 422158497266733678592, -243014206258719292915712, 165880670114405086398513152
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A076417.

Programs

  • Mathematica
    Log[ 1+Tanh[ x ]*Tan[ x ] ] (* Even Part *)
    nn = 20; Table[(CoefficientList[Series[Log[1 + Tan[x]*Tanh[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)

Formula

a(n) ~ (2*n)! * (-1)^(n+1) * 2^(2*n) / (n * r^(2*n)), where r = 1.87510406871196116644530824107821416257011173353... (see A076417) is the root of the equation sin(r) = tanh(r). - Vaclav Kotesovec, Jan 24 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A076418 Decimal expansion of second solution of equation cos(x)*cosh(x) = -1.

Original entry on oeis.org

4, 6, 9, 4, 0, 9, 1, 1, 3, 2, 9, 7, 4, 1, 7, 4, 5, 7, 6, 4, 3, 6, 3, 9, 1, 7, 7, 8, 0, 1, 9, 8, 1, 2, 0, 4, 9, 3, 8, 9, 8, 9, 6, 7, 3, 7, 5, 4, 5, 7, 6, 6, 8, 2, 8, 9, 7, 2, 8, 0, 3, 2, 7, 7, 8, 4, 9, 0, 7, 7, 9, 3, 6, 8, 0, 1, 0, 5, 2, 5, 0, 8, 0, 0, 3, 5, 8, 8, 5, 0, 2, 7, 8, 1, 5, 5, 4, 2, 7, 3, 1, 5, 7, 7, 2
Offset: 1

Views

Author

Zak Seidov, Oct 10 2002

Keywords

Comments

This is an equation related to a cantilever beam: cos(x)*cosh(x) = -1. The first three solutions are: 1.875 (A076417), 4.69409 (this sequence) and 7.854757 (A076419).

Examples

			4.694091132974174576436391778...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Cos[x]Cosh[x]==-1,{x,4},WorkingPrecision-> 120]] [[1]] (* Harvey P. Dale, May 01 2019 *)
  • PARI
    solve(x=4, 5, cos(x)*cosh(x) + 1) \\ Michel Marcus, Sep 11 2019

A076419 Decimal expansion of third solution of equation cos(x)*cosh(x) = -1.

Original entry on oeis.org

7, 8, 5, 4, 7, 5, 7, 4, 3, 8, 2, 3, 7, 6, 1, 2, 5, 6, 4, 8, 6, 1, 0, 0, 8, 5, 8, 2, 7, 6, 4, 5, 7, 0, 4, 5, 7, 8, 4, 8, 5, 4, 1, 9, 2, 9, 2, 3, 0, 0, 4, 6, 6, 9, 4, 4, 2, 3, 2, 8, 1, 4, 4, 8, 8, 2, 6, 5, 6, 1, 4, 2, 1, 4, 0, 8, 6, 5, 3, 5, 2, 8, 2, 3, 4, 9, 8, 6, 6, 7, 8, 9, 3, 9, 9, 9, 8, 0, 0, 5, 3, 6, 2, 1, 3
Offset: 1

Views

Author

Zak Seidov, Oct 10 2002

Keywords

Comments

This is an equation related to a cantilever beam: cos(x)*cosh(x) = -1. The first three solutions are: 1.875 (A076417), 4.69409 (A076418) and 7.854757 (this sequence).

Examples

			cos(x) cosh(x) = -1, x = 7.854757...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Cos[x]Cosh[x]==-1,{x,8},WorkingPrecision-> 120]] [[1]] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    solve(x=7, 8, cos(x)*cosh(x) + 1) \\ Michel Marcus, Sep 11 2019

A068353 Decimal expansion of smallest positive root of cos(Pi*x/2)*cosh(Pi*x/2) = -1.

Original entry on oeis.org

1, 1, 9, 3, 7, 2, 8, 3, 2, 5, 3, 8, 8, 9, 3, 4, 3, 2, 3, 4, 3, 8, 8, 0, 9, 2, 3, 4, 7, 6, 0, 3, 2, 9, 0, 1, 6, 9, 9, 4, 3, 0, 3, 3, 9, 9, 3, 6, 5, 8, 9, 7, 9, 6, 0, 8, 1, 6, 4, 9, 7, 2, 5, 6, 3, 4, 8, 2, 6, 2, 2, 3, 5, 4, 7, 5, 7, 2, 2, 6, 8, 1, 3, 7, 2, 0, 5, 3, 0, 7, 1, 0, 9, 1, 5, 1, 4, 4, 2, 0, 9, 8, 8, 7, 2
Offset: 1

Views

Author

Joost de Winter, Feb 28 2002

Keywords

Examples

			1.1937283253889343234388...
		

Crossrefs

Equals (2/Pi) times A076417.

Programs

  • Mathematica
    RealDigits[FindRoot[Cos[Pi x/2]Cosh[Pi x/2]==-1, {x, 1}, WorkingPrecision->200][[1, 2]]][[1]]
  • PARI
    solve(x=1,2,cos(x)*cosh(x)+1)*2/Pi \\ Charles R Greathouse IV, Apr 16 2014

Extensions

Edited by Dean Hickerson, Jun 07 2002
Offset corrected by R. J. Mathar, Feb 05 2009
Showing 1-7 of 7 results.