cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101921 a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.

Original entry on oeis.org

0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, 33, 36, 36, 40, 41, 44, 43, 48, 49, 52, 52, 56, 57, 60, 57, 64, 65, 68, 68, 72, 73, 76, 75, 80, 81, 84, 84, 88, 89, 92, 90, 96, 97, 100, 100, 104, 105, 108, 107, 112, 113, 116, 116, 120, 121, 124, 120, 128
Offset: 1

Views

Author

Ralf Stephan, Dec 21 2004

Keywords

Comments

Exponent of 2 in tangent numbers A000182.
Also, exponent of 2 in the sequences A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.
Also, exponent of 2 in 4^(n-1)/n. [David Brink, Aug 08 2013]

Examples

			G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* Michael Somos, Mar 02 2014 *)
  • PARI
    a(n)=valuation(4^(n-1)/n,2); \\ Joerg Arndt, Aug 13 2013
    
  • Python
    def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # Chai Wah Wu, Apr 14 2023
  • Sage
    [2*n-2 -valuation(n,2) for n in (1..100)] # G. C. Greubel, Nov 29 2021
    

Formula

a(n) = 2n - 2 - A007814(n).
a(n) = A007814(A000182(n)).
G.f.: Sum_{k>=0} t^2*(1+4*t+t^2)/(1-t^2)^2 where t=x^2^k.

A076417 Decimal expansion of first solution of equation cos(x)*cosh(x) = -1.

Original entry on oeis.org

1, 8, 7, 5, 1, 0, 4, 0, 6, 8, 7, 1, 1, 9, 6, 1, 1, 6, 6, 4, 4, 5, 3, 0, 8, 2, 4, 1, 0, 7, 8, 2, 1, 4, 1, 6, 2, 5, 7, 0, 1, 1, 1, 7, 3, 3, 5, 3, 1, 0, 6, 9, 9, 8, 8, 2, 4, 5, 4, 1, 3, 7, 1, 3, 1, 0, 5, 6, 7, 9, 9, 5, 2, 8, 4, 0, 4, 2, 8, 6, 3, 8, 5, 2, 6, 5, 6, 6, 5, 5, 0, 5, 8, 1, 8, 8, 6, 0, 3, 7, 0, 8, 4, 1, 0
Offset: 1

Views

Author

Zak Seidov, Oct 10 2002

Keywords

Comments

This is an equation related to a cantilever beam: cos(x)*cosh(x) = -1. The first three solutions are: 1.875 (this sequence), 4.69409 (A076418) and 7.854757 (A076419).

Examples

			1.87510406871196116644530824107821416257011173353...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Cos[x]Cosh[x]==-1,{x,1.8}, WorkingPrecision->120], 10,120][[1]] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    solve(x=1, 2, cos(x)*cosh(x) + 1) \\ Michel Marcus, Sep 11 2019
Showing 1-2 of 2 results.