cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005981 Number of 2 up, 2 down, 2 up, ... permutations of length 2n + 1.

Original entry on oeis.org

1, 1, 6, 71, 1456, 45541, 2020656, 120686411, 9336345856, 908138776681, 108480272749056, 15611712012050351, 2664103110372192256, 531909061958526321421, 122840808510269863827456, 32491881630252866646683891, 9758611490955498257378246656
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, personal communication.

Crossrefs

Bisection of A058258.

Programs

  • Maple
    g:=((cosh(x)-1)*sin(x)+(cos(x)+1)*sinh(x))/(cos(x)*cosh(x)+1): series(%,x,35):
    seq(n!*coeff(%,x,n),n=1..34,2); # Peter Luschny, Feb 07 2017
  • Mathematica
    egf = ((Cosh[x]-1)*Sin[x]+(Cos[x]+1)*Sinh[x])/(Cos[x]*Cosh[x]+1); a[n_] := SeriesCoefficient[egf, {x, 0, 2*n+1}]*(2*n+1)!; Array[a, 17, 0] (* Jean-François Alcover, Mar 13 2014 *)

Formula

E.g.f.: x + Sum_{n>=1} a(n)*(x^(2n+1))/(2n+1)! = (f(0,x)*f(1,x) -f(2,x)*f(3,x)+ f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k>=0} (x^(4k+j))/(4k+j)!, j = 0,1,2,3, is the j-th generalized hyperbolic function. - Peter Bala, Jul 13 2007
Basset (2013) gives an e.g.f. involving trigonometric and hyperbolic functions. - N. J. A. Sloane, Dec 24 2013
a(n) ~ 4 * (2*n+1)! / (tan(r/2)^2 * r^(2*n+2)), where r = A076417 = 1.8751040687119611664453082410782141625701117335310699882454137131... is the root of the equation cos(r)*cosh(r) = -1. - Vaclav Kotesovec, Feb 01 2015

A131454 2 up, 2 down, ..., 2 up, 2 down, 2 up permutations of length 4n+3.

Original entry on oeis.org

1, 71, 45541, 120686411, 908138776681, 15611712012050351, 531909061958526321421, 32491881630252866646683891, 3302814916156503291298772711761, 527393971346575736206847604137659031, 126355819963625435928020023737689391659701
Offset: 0

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

Bisection of A005981. The entries listed above suggest various congruences for a(n): a(n) = 1 (mod 10), a(n) = 1 + 70*n (mod 100), a(n) = 1 + 70*n + 200*n(n-1) (mod 1000). Are these congruences true for all n? For an arbitrary integer m, the sequence a(n) taken modulo m may eventually become periodic. Compare with A081727.

Examples

			(1 4 5 3 2 6 7) is a 2 up, 2 down, 2 up permutation - one of the seventy-one permutations of this type in the symmetric group on 7 letters.
		

Crossrefs

Programs

  • Maple
    g:=(sinh(x)-sin(x))/(cos(x)*cosh(x)+1): series(%,x,44):
    seq(n!*coeff(%,x,n),n=3..45,4); # Peter Luschny, Feb 07 2017
  • Mathematica
    Table[(CoefficientList[Series[(-Sin[x] + Sinh[x]) / (1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 59]!)[[n]], {n, 4, 60, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)

Formula

E.g.f.: Sum_{n>=0} a(n)*(x^(4n+3))/(4n+3)! = (exp(2x)-2*sin(x)*exp(x)-1)/(2*exp(x)+cos(x)*(exp(2x)+1)). It appears that a(n) = (4n+3)!*coefficient of x^(4n+3) in the Taylor expansion of -4/(2*exp(x)+cos(x)*(exp(2x)+1)).

A131455 Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.

Original entry on oeis.org

1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
Offset: 1

Views

Author

Peter Bala, Jul 13 2007

Keywords

Comments

a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.
a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.

Examples

			From _Petros Hadjicostas_, Jul 25 2020: (Start)
For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
         3
        /
       2
      /
     1
For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
        5          5          5          5          5          5
       / \        / \        / \        / \        / \        / \
      3   4      4   3      2   4      3   4      4   3      4   2
     /     \    /     \    /     \    /     \    /     \    /     \
    1       2  1       2  1       3  2       1  2       1  3       1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
         `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
        end:
    a:= n-> n*b(0, 2*n-1, 0):
    seq(a(n), n=1..19);  # Alois P. Heinz, Nov 23 2021
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
         b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
    a[n_] := n*b[0, 2*n - 1, 0];
    Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
  • PARI
    f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
    g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));
    lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ Petros Hadjicostas, Jul 25 2020

Formula

E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.

Extensions

More terms from Petros Hadjicostas, Jul 25 2020
Showing 1-3 of 3 results.