A005981
Number of 2 up, 2 down, 2 up, ... permutations of length 2n + 1.
Original entry on oeis.org
1, 1, 6, 71, 1456, 45541, 2020656, 120686411, 9336345856, 908138776681, 108480272749056, 15611712012050351, 2664103110372192256, 531909061958526321421, 122840808510269863827456, 32491881630252866646683891, 9758611490955498257378246656
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, personal communication.
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Nicolas Basset, Counting and generating permutations using timed languages, 2013.
- Nicolas Basset, Counting and generating permutations in regular classes of permutations, HAL Id: hal-01093994, 2014.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, arXiv:math/0209062 [math.AG], 2002; Moscow Math. J., 3 (2003), 647-659.
- P. R. Stein & N. J. A. Sloane, Correspondence, 1975
- Eric Weisstein's World of Mathematics, Generalized Hyperbolic Functions
-
g:=((cosh(x)-1)*sin(x)+(cos(x)+1)*sinh(x))/(cos(x)*cosh(x)+1): series(%,x,35):
seq(n!*coeff(%,x,n),n=1..34,2); # Peter Luschny, Feb 07 2017
-
egf = ((Cosh[x]-1)*Sin[x]+(Cos[x]+1)*Sinh[x])/(Cos[x]*Cosh[x]+1); a[n_] := SeriesCoefficient[egf, {x, 0, 2*n+1}]*(2*n+1)!; Array[a, 17, 0] (* Jean-François Alcover, Mar 13 2014 *)
A131454
2 up, 2 down, ..., 2 up, 2 down, 2 up permutations of length 4n+3.
Original entry on oeis.org
1, 71, 45541, 120686411, 908138776681, 15611712012050351, 531909061958526321421, 32491881630252866646683891, 3302814916156503291298772711761, 527393971346575736206847604137659031, 126355819963625435928020023737689391659701
Offset: 0
(1 4 5 3 2 6 7) is a 2 up, 2 down, 2 up permutation - one of the seventy-one permutations of this type in the symmetric group on 7 letters.
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- Christopher R. H. Hanusa, Alejandro H. Morales, and Martha Yip, Column convex matrices, G-cyclic orders, and flow polytopes, arXiv:2107.07326 [math.CO], 2021.
- L. Olivier, Bemerkungen über eine Art von Functionen, welche ähnliche Eigenschaften haben, wie der Cosinus und Sinus, J. Reine Angew. Math. 2 (1827), 243-251.
- H. Prodinger and T. A. Tshifhumulo, On q-Olivier Functions, Annals of Combinatorics 6 (2002), 181-194.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, arXiv:math/0209062 [math.AG], 2002.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, Moscow Math. J. 3 (2003), 647-659.
-
g:=(sinh(x)-sin(x))/(cos(x)*cosh(x)+1): series(%,x,44):
seq(n!*coeff(%,x,n),n=3..45,4); # Peter Luschny, Feb 07 2017
-
Table[(CoefficientList[Series[(-Sin[x] + Sinh[x]) / (1 + Cos[x]*Cosh[x]), {x, 0, 60}], x] * Range[0, 59]!)[[n]], {n, 4, 60, 4}] (* Vaclav Kotesovec, Sep 09 2014 *)
A131455
Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.
Original entry on oeis.org
1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
Offset: 1
From _Petros Hadjicostas_, Jul 25 2020: (Start)
For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
3
/
2
/
1
For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
5 5 5 5 5 5
/ \ / \ / \ / \ / \ / \
3 4 4 3 2 4 3 4 4 3 4 2
/ \ / \ / \ / \ / \ / \
1 2 1 2 1 3 2 1 2 1 3 1
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..250
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, arXiv:math/0209062 [math.AG], 2002.
- B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, Moscow Math. J., 3 (2003), 647-659.
- Eric Weisstein's World of Mathematics, Generalized Hyperbolic Functions.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
`if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
end:
a:= n-> n*b(0, 2*n-1, 0):
seq(a(n), n=1..19); # Alois P. Heinz, Nov 23 2021
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
a[n_] := n*b[0, 2*n - 1, 0];
Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
-
f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));
lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ Petros Hadjicostas, Jul 25 2020
Showing 1-3 of 3 results.
Comments