A131490 Appears in Taylor series of powers of generalized Bessel functions.
1, 1, 3, 16, 130, 1485, 22645, 444136, 10889676, 326345460, 11736144420, 498798542880, 24732729791484, 1415034219327729, 92523874454996985, 6856434802243346320, 571604206230905727880, 53259509403796625217288, 5513868420471764306104008
Offset: 1
Keywords
Links
- Carl M. Bender, Dorje C. Brody, and Bernhard K. Meister, On powers of Bessel functions, J. Math. Phys. vol 44, No. 1 (2003) pp 309-314.
- Yan Hong, Bai-Ni Guo, and Feng Qi, Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind, Computer Modeling in Engineering and Sciences (2021) Vol. 129, No. 1, 409-423.
- F. T. Howard, Integers Related to the Bessel Function J1(z), Fibonacci Quarterly, Volume 23, Number 3, August 1985, pp. 249-257.
Programs
-
Maple
A131490 := proc(n) local twos,resul; resul := twos*taylor(BesselI(0,twos),twos=0,2*n+3) ; resul := resul/taylor(BesselI(1,twos),twos=0,2*n+3) ; resul := taylor(resul-4,twos=0,2*n+3) ; resul := coeftayl(resul,twos=0,2*n) ; resul := resul*4^n/2 ; abs(resul*factorial(n+1)*factorial(n)) ; end: seq(A131490(n),n=1..23) ; # R. J. Mathar, Jul 31 2007
Formula
For n>1, a(n) = (Sum_{r=1..n-1} binomial(n+1,r+1)*binomial(n+1,r)*a(r)*a(n-r))/(n+1)^2. - Michel Marcus, Oct 17 2012
Extensions
More terms from R. J. Mathar, Jul 31 2007
Comments