A131509 a(n) = (n + 1)*(n^2 + 2)*(n^3 + 3)/6.
1, 4, 33, 220, 1005, 3456, 9709, 23528, 50985, 101260, 187561, 328164, 547573, 877800, 1359765, 2044816, 2996369, 4291668, 6023665, 8303020, 11260221, 15047824, 19842813, 25849080, 33300025, 42461276, 53633529, 67155508, 83407045, 102812280, 125842981
Offset: 0
Links
- M. F. Hasler, Table of n, a(n) for n = 0..100
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Magma
[(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
-
Maple
p:=proc(n,i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n,3),n=0..30)]; seq((1/6)*(n+1)*(n^2+2)*(n^3+3),n=0..25); # Emeric Deutsch, Aug 23 2007
-
Mathematica
Table[x = 3; Product[(n^k) + k, {k, x}]/6, {n, 0, 27}] (* Michael De Vlieger, Apr 24 2015 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,4,33,220,1005,3456,9709},40] (* Harvey P. Dale, Oct 18 2016 *)
-
Maxima
A131509(n):=(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6$ makelist(A131509(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
PARI
vector(20,n,n--;(n+1)*(n^2+2)*(n^3+3)/3!) \\ Derek Orr, Apr 25 2015
-
PARI
A131509(n)=(n+1)*(n^2+2)*(n^3+3)/6 \\ M. F. Hasler, May 02 2015
Formula
G.f.: (1 -3x +26x^2 +38x^3 +53x^4 +5x^5)/(1-x)^7. - Emeric Deutsch, Aug 23 2007
Extensions
Corrected and extended by R. J. Mathar and Emeric Deutsch, Aug 21 2007
Comments