cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A159821 Continued fraction for (e*Pi*phi)^2 A131566, where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

190, 1, 12, 2, 2, 1, 12, 2, 10, 2, 1, 16, 1, 226, 2, 1, 2, 1, 2, 2, 1, 1, 9, 3, 7, 1, 1, 1, 2, 1, 1, 1, 6, 2, 2, 494, 1, 1, 60, 194, 2, 1, 2, 1, 4, 1, 1, 7, 1, 4, 7, 1, 1, 1, 5, 4, 2, 5, 2, 1, 4, 4, 1, 7, 1, 16, 4, 1, 1, 4, 2, 1, 5283, 4, 11, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 3, 1, 3, 5, 3, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Harry J. Smith, Apr 26 2009

Keywords

Examples

			(e*Pi*phi)^2 = 190.925523334... = 190 + 1/(1 + 1/(12 + 1/(2 + 1/(2 + ...)))).
		

Programs

  • Mathematica
    ContinuedFraction[(E*Pi*GoldenRatio)^2,100] (* Harvey P. Dale, Jan 15 2015 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); phi = (1 + sqrt(5))/2; x=contfrac((exp(1)*Pi*phi)^2); for (n=1, 20001, write("b159821.txt", n-1, " ", x[n])); }

A133065 Decimal expansion of (e*Pi*Phi)^(1/2).

Original entry on oeis.org

3, 7, 1, 7, 2, 0, 0, 5, 9, 0, 1, 1, 8, 3, 8, 8, 3, 2, 9, 9, 2, 9, 0, 4, 7, 5, 4, 7, 6, 5, 2, 5, 4, 7, 6, 7, 2, 1, 5, 8, 2, 8, 6, 3, 5, 3, 5, 6, 4, 3, 6, 7, 7, 3, 4, 2, 4, 5, 2, 5, 5, 8, 5, 6, 4, 7, 3, 3, 2, 0, 9, 0, 1, 0, 5, 8, 7, 4, 8, 5, 7, 4, 9, 2, 4, 7, 5, 2, 1, 1, 8, 8, 2, 1, 7, 7, 0, 2, 6, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2007

Keywords

Comments

phi = (1 + sqrt(5))/2 = 1.61803...

Examples

			3.7172005901...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[E*Pi*GoldenRatio], 10, 50][[1]] (* G. C. Greubel, Oct 20 2017 *)
  • PARI
    sqrt(exp(1)*Pi*(1+sqrt(5))/2) \\ G. C. Greubel, Oct 20 2017

A133066 Decimal expansion of (e*Pi*Phi)^(1/3).

Original entry on oeis.org

2, 3, 9, 9, 6, 2, 8, 4, 2, 7, 8, 4, 4, 5, 3, 4, 4, 6, 2, 2, 0, 0, 6, 6, 0, 9, 7, 1, 9, 1, 1, 8, 7, 4, 2, 0, 8, 8, 5, 8, 5, 3, 1, 2, 2, 3, 8, 2, 0, 8, 0, 9, 7, 1, 0, 4, 3, 1, 3, 2, 8, 1, 0, 2, 2, 8, 1, 1, 7, 6, 4, 4, 6, 5, 0, 7, 9, 5, 8, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2007

Keywords

Comments

phi = (1 + sqrt(5))/2 = 1.61803...

Examples

			2.39962842784...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(E \[Pi] GoldenRatio)^(1/3),80]][[1]]  (* Harvey P. Dale, Feb 08 2011 *)
  • PARI
    (exp(1)*Pi*(1+sqrt(5))/2)^(1/3) \\ G. C. Greubel, Oct 20 2017

Extensions

More terms from Harvey P. Dale, Feb 08 2011
Showing 1-3 of 3 results.