cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131632 Triangle T(n,k) read by rows = number of partitions of n-set into k blocks with distinct sizes, k = 1..A003056(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 15, 1, 21, 60, 1, 63, 105, 1, 92, 448, 1, 255, 2016, 1, 385, 4980, 12600, 1, 1023, 15675, 27720, 1, 1585, 61644, 138600, 1, 4095, 155155, 643500, 1, 6475, 482573, 4408404, 1, 16383, 1733550, 12687675, 37837800, 1, 26332, 4549808, 60780720
Offset: 1

Views

Author

Vladeta Jovovic, Sep 04 2007

Keywords

Comments

Row sums = A007837.
Sum k! * T(n,k) = A032011.
Sum k * T(n,k) = A131623. - Geoffrey Critzer, Aug 30 2012.
T(n,k) is also the number of words w of length n over a k-ary alphabet {a1,a2,...,ak} with #(w,a1) > #(w,a2) > ... > #(w,ak) > 0, where #(w,x) counts the letters x in word w. T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa. - Alois P. Heinz, Jun 21 2013

Examples

			Triangle T(n,k)begins:
  1;
  1;
  1,     3;
  1,     4;
  1,    15;
  1,    21,      60;
  1,    63,     105;
  1,    92,     448;
  1,   255,    2016;
  1,   385,    4980,    12600;
  1,  1023,   15675,    27720;
  1,  1585,   61644,   138600;
  1,  4095,  155155,   643500;
  1,  6475,  482573,  4408404;
  1, 16383, 1733550, 12687675, 37837800;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, v) option remember; `if`(t=1, 1/(n+v)!,
          add(b(n-j, j, t-1, v+1)/(j+v)!, j=i..n/t))
        end:
    T:= (n, k)->`if`(k*(k+1)/2>n, 0, n!*b(n-k*(k+1)/2, 0, k, 1)):
    seq(seq(T(n, k), k=1..floor(sqrt(2+2*n)-1/2)), n=1..20);
    # Alois P. Heinz, Jun 21 2013
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Sep 27 2019
  • Mathematica
    nn=10;p=Product[1+y x^i/i!,{i,1,nn}];Range[0,nn]! CoefficientList[ Series[p,{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Aug 30 2012 *)

Formula

E.g.f.: Product_{n>=1} (1+y*x^n/n!).
T(A000217(n),n) = A022915(n). - Alois P. Heinz, Jul 03 2018