cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131638 Increasing binary trees having exactly two vertices with outdegree 1.

Original entry on oeis.org

1, 11, 180, 4288, 141584, 6213288, 350400832, 24718075136, 2133652515072, 221311262045440, 27166907582280704, 3895974311462313984, 645512064907811491840, 122381396964887716078592, 26325690425815766552887296, 6377608610246241663568248832
Offset: 1

Views

Author

Wenjin Woan, Oct 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[1/2*(-((x*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]) /Sqrt[2]) + 3*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]^2), {x, 0, n}], {n, 2, 40, 2}] (* Vaclav Kotesovec after Michel Marcus, Sep 25 2013 *)
  • PARI
    lista(m) = { default(realprecision, 30); x = y + O(y^m); egf = (3*tan(x/sqrt(2))^2/cos(x/sqrt(2))^2-x*tan(x/sqrt(2))/(sqrt(2)*cos(x/sqrt(2))^2))/2; forstep (n=2, m, 2, print1(round(n!*polcoeff(egf, n, y)), ", "));}  \\ Michel Marcus, Mar 03 2013

Formula

E.g.f.: (3*sec(x/sqrt(2))^2*tan(x/sqrt(2))^2-x*sec(x/sqrt(2))^2*tan(x/sqrt(2))/(sqrt(2)))/2. - Michel Marcus, Mar 03 2013
a(n) ~ (2*n)! * 2^(n+6)*n^3/Pi^(2*n+4). - Vaclav Kotesovec, Sep 25 2013
From Klaus K Haverkamp, Jul 02 2023: (Start)
a(n) = (A002105(n+2) - (n+1)*A002105(n+1))/2.
a(n) = A094503(2n+1,n). (End)

Extensions

More terms from Michel Marcus, Mar 03 2013